• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 430
  • 430
  • 148
  • 128
  • 117
  • 108
  • 72
  • 65
  • 60
  • 48
  • 43
  • 41
  • 41
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Bridgeless Active Power Factor Correction Using a Current Fed Push Pull Converter

Bianchi, Jeramie Seth 01 June 2011 (has links) (PDF)
ABSTRACT Bridgeless Active Power Factor Correction Using a Current Fed Push Pull Converter Jeramie Seth Bianchi Switched Mode Power Supplies have become increasingly popular for efficient methods of delivering power to an assortment of electronic devices. This thesis proposes a method of using a current fed push pull converter to provide active power factor correction and rectification in a single stage. While most AC-DC converters utilize a bridge rectifier to convert AC-DC and then perform DC-DC conversion, the proposed circuit will utilize its output diodes to perform rectification, thus eliminating the need for a bridge rectifier. This circuit will also inherently provide power factor correction because the input current has a continuous path for current flow due to the current fed topology where no time exists for both switches to be off. Through analog circuitry for the controller, multiple methods of AC main switching are tested, including isolation techniques using optocouplers, to prove the most efficient way to control a bidirectional switch. Simulations with PSPICE and hardware implementation of the design prove that alternative methods to provide quality power conversion for Switched Mode Power Supplies are available. Keywords: Active Power Factor Correction, Current Fed Push Pull Converter, SMPS, Bidirectional Switching, IGBT, Bridgeless Rectification
332

Design of high-power ultra-high-speed permanent magnet machine

Islam, Md Khurshedul 12 May 2023 (has links) (PDF)
The demand for ultra-high-speed machines (UHSM) is rapidly growing in high-tech industries due to their attractive features. A-mechanically-based-antenna (AMEBA) system is another emerging application of UHSM. It enables portable wireless communication in the radio frequency (RF)-denied environment, which was not possible until recently. The AMEBA system requires a high-power (HP) UHSM for its effective communication performance. However, at the expected rotational speed range of 0.5 to 1 million rpm, the power level of UHSM is limited, and no research effort has succeeded to improve the power level of UHSM. The design of HP-UHSM is highly iterative, and it presents several critical challenges, unlike low-power UHSM, such as critical-bending-resonance (CBR), strong mutual influence among Multiphysics performances, exponential air-friction loss, and material limitation. When the magnetic loading of the UHSM rotor is increased to improve the power level, the rotor experiences serious mechanical vibration due to the excessive centrifugal forces and CBR. This vibration limits the operation of HP-UHSM and leads to structural breakdown. Furthermore, the design process becomes more critical when it considers the multidisciplinary design constraints and application requirements. This dissertation proposed a new Multiphysics design method to develop HP-UHSM for critical applications. First, the critical design constraints which prevent increasing the output power of UHSM are investigated. Then, a Multiphysics optimization model is developed by coupling several multidisciplinary analysis modules. This proposed optimization model enables (i) defining multidisciplinary design constraints, (ii) consideration of Multiphysics mutual influence, and (iii) a trade-off analysis between the efficiency and design-safety-margin. The proposed design model adopts the multiphase winding system to effectively increase the electrical loading in the slotless stator. Finally, a 2000 W 500,000 rpm HP-UHSM is optimized for an AMEBA system using the proposed design method. The optimized 2 kW 500,000 rpm machine prototype and its dynamo setup are built in the laboratory. Extensive finite element simulations and experimental testing results are presented to validate the effectiveness of the proposed design method. The results show that the proposed HP-USHM has 94.5% efficiency, 47 kW/L power density, 30% global design safety margin at the maximum speed and no CBR frequency below 11 kHz.
333

Early Wildfire Detection with Line Sensors

Yan, Virginia 01 March 2021 (has links) (PDF)
Over the last few years, wildfires have become more devastating to communities as the fires are inevitably destructive to many homes, businesses, and ecosystems. Frequent wildfires also pose a significant threat to power grids and nearby residents as they can damage transmission lines and other electrical equipment, which in turn can cause major power shutdowns. Especially in western U.S., severe drought conditions and weather variability cause residents to become more vulnerable to wildfire disasters as their safety is threatened. We are incompetent to control the wildfires effectively despite existing advanced technologies. Hence, an algorithm based on energy conservation and heat transfer mechanisms is created to examine the feasibility of line sag sensors to detect wildfires in an early stage. To test the algorithm, it is integrated with a 150-bus synthetic power network using MATLAB. The resulted conductor temperature from randomly selected parameters like fire locations, weather conditions, and fire rate of spread causes the change in line sag over 10 minutes. The line sag behavior is then analyzed under different scenarios. By monitoring real-time power line sag measurements, the analysis shows that early onset wildfires can be detected in less than 3 minutes and up to about 1 km from the power line to the fire. It is also suggested the utilization of silica fabrics on the sensors can provide thermal and fire protection while having no impact to the power line magnetic fields.
334

Design and Construction of 1800W Modular Multiple Input Single Output Non-isolated DC-DC Converters

Gallardo, Angelo Miguel Asuncion 01 June 2017 (has links) (PDF)
This thesis report details the design and construction of non-isolated DC-DC converters to create a Multiple Input Single Output (MISO) converter for combining multiple renewable energy sources into one single output. This MISO uses the four-switch buck-boost topology to output a single 48V from multiple nominal 24V inputs. The MISO converter implements a modular approach to deliver 1800W output power. Each module in the MISO is rated at 600W and they share the output power equally. Hardware results show that the converter produces 1800W of output power from three sources with 96.4% efficiency. Each module also demonstrates equal sharing feature of the MISO converter.
335

Efficiency Study of a Hybrid AC/DC House

Santiago, Eunice Dominique Solomon 01 June 2023 (has links) (PDF)
With the proliferation of residential-scale renewable energy sources and DC loads, it has become attractive to use residential DC electrical system that could offer benefits over the legacy residential AC electrical system. The Hybrid AC/DC house provides a sustainable alternative to preexisting residential electrical system by having both AC and DC buses. The DC bus facilitates the connection from DC sources to DC loads, whereas the AC bus interfaces AC sources to AC loads. The study develops the equations to calculate losses based on a model consisting of four main components: Multiple-Input Single-Output (MISO) converter, AC-DC converter, inverter, and DC-DC converter. Parameters such as AC and DC bus voltages, load consumption, and number of AC and DC branches were used to construct multiple scenarios and evaluate efficiency. Results of the study show that the Hybrid AC/DC house displays higher efficiencies than when the house has AC only sources with higher DC load consumption. Similarly, the Hybrid AC/DC house has better efficiency than when the house has DC only sources under higher AC load consumption. For the DC bus, results of the study further indicate that the higher DC voltage level yields better efficiency than those obtained from lower DC voltages.
336

Integrating the Built and Natural Environments Through Renewable Energy Technologies: supplying wind power to Kirkmont Center

Cerny, Mark A. 02 May 2006 (has links)
No description available.
337

Evaluation of Active Balancing Algorithms and an Improved Method for a Deployed Active Battery Balancer as Well as Physical Implementation

Najmabadi, Armin 10 1900 (has links)
<p><strong>Abstract</strong></p> <p><strong> </strong>Lithium-ion cells have been the workhorse for customer products including laptop computers, cell phones and battery energy storage systems that can store energy from renewable energy sources. The internal resistance of them is very low, resulting in a low amount of wasted energy. Performance of Li-Ion cells is wonderful if they treated well. For this reason, an efficient battery management system (BMS) is essential in order to maximize the battery's capacity, battery means a collection of cells wired in series providing a higher voltage. So by using a BMS, SOC (State Of Charge) levels of cells get closer to each other resulting increased life and capacity of a battery. There are active and passive battery balancers. The energy which is extracted from those cells with higher SOC using passive balancer is wasted in heat, so it is not so efficient in terms of wasted energy in comparison with active balancing algorithms. There are different types of active balancing techniques. Cell to cell technique, cell to battery and battery to cell. Among the above mentioned, cell to battery performs well. However, when push-pull converters (which have high performance) are used, flux imbalance phenomenon ( which is resulted in a asymmetric hysteresis loop of a magnetic core) is unavoidable. In order to prevent this phenomenon, current mode topology is used. Hence, the transistors won't burn out due to this effect. In this thesis I simulated current mode algorithms with push-pull converters with MATLAB SIMULINK. I also physically designed push-pull converters and built it with help of chips ( current mode controllers, optocouplers, transistors, fast recovery diodes, linear and shunt regulators). I did simulate two active balancing methods ( Cell to cell and cell to battery) and compared the results. The results that came from cell to battery indicated a better performance in terms of balancing speed. For three cells balancing time reduced from 3570 seconds in cell to cell method to 518 seconds in cell to battery method.</p> / Master of Science in Electrical and Computer Engineering (MSECE)
338

On Optimal Policies for Energy-Aware Servers

Maccio, Vincent J. 10 1900 (has links)
<p>As energy costs and energy used by server farms increase, so does the desire to implement energy-aware policies. Although under some cost functions, optimal policies for single as well as multiple server systems are known, large gaps in theoretical knowledge are present in the field. Specifically, there exists many widely used and non-trivial cost functions, where the corresponding optimal policy remains unknown. This work presents and leverages a model which allows for the exact analysis of these optimal policies with considerable generality, for on/off single server systems under a broad range of cost functions that are based on expected response time, energy usage and switching costs. Furthermore, from the results derived in the analysis, several applications and implications are presented and discussed. This includes the determination of routing probabilities to show a range of non-trivial optimal routing probabilities and server configurations when energy concerns are a factor.</p> / Master of Applied Science (MASc)
339

Design And Analysis Of A New Buck-Boost Converter With A Low-Side Switch

Awidah, Abdullah 01 June 2024 (has links) (PDF)
This work explores the design, simulation, construction, and analysis of a novel Non-isolated DC-DC Buck-Boost converter which has the advantage of incorporating a low-side switch compared to the traditional buck-boost which requires a high-side switch. This allows the use of a low-side driver which further simplifies the design and operation of the converter. The proposed Buck-Boost converter was constructed to provide -24 V output from an input range of 12V-18V with 15V nominal input at 10W maximum output power utilizing 500kHz switching frequency. Findings from simulations and hardware tests verify that the converter effectively provides the desired -24 V output at varying loads with less than 3% ripple. At the nominal input voltage, the efficiency of the converter reaches 82.37% at full load and peak efficiency of 88.5% at 20% load. Moreover, the input voltage ripple of the proposed non-isolated converter reached 8.4% at full load, due to the pulsating nature of the input current. Overall, results verify the feasibility of the proposed non-isolated Buck-Boost converter as an alternative solution for the conventional buck-boost with the advantage of a low side switch while maintaining a low component count.
340

AVERAGE-VALUE MODELING OF HYSTERESIS CURRENT CONTROL IN POWER ELECTRONICS

Chen, Hanling 01 January 2015 (has links)
Hysteresis current control has been widely used in power electronics with the advantages of fast dynamic response under parameter, line and load variation and ensured stability. However, a main disadvantage of hysteresis current control is the uncertain and varying switching frequency which makes it difficult to form an average-value model. The changing switching frequency and unspecified switching duty cycle make conventional average-value models based on PWM control difficult to apply directly to converters that are controlled by hysteresis current control. In this work, a new method for average-value modeling of hysteresis current control in boost converters, three-phase inverters, and brushless dc motor drives is proposed. It incorporates a slew-rate limitation on the inductor current that occurs naturally in the circuit during large system transients. This new method is compared with existing methods in terms of simulation run time and rms error. The performance is evaluated based on a variety of scenarios, and the simulation results are compared with the results of detailed models. The simulation results show that the proposed model represents the detailed model well and is faster and more accurate than existing methods. The slew-rate limitation model of hysteresis current control accurately captures the salient detail of converter performance while maintaining the computational efficiency of average-value models. Validations in hardware are also presented.

Page generated in 0.0761 seconds