Spelling suggestions: "subject:"power anda energy"" "subject:"power ando energy""
241 |
Analysis and Design of an Off-Grid Residential Power SystemRotsios, Christopher 01 June 2020 (has links) (PDF)
This thesis aims to provide a recommended power system design for optimal efficiency, reliability, and cost in off-grid applications. The power system examined in this project is a residence in an off-grid community called Quail Springs that generates its energy from roof mounted solar panels. The existing system was analyzed to see what equipment can remain, what needs to be upsized, and what needs to be added to the system. Two power systems are considered for the residence: a fully AC power system and a hybrid AC/DC power system. Simulations were run in PSCAD to compare the efficiencies of the two proposed systems at varying load. The results of the simulations showed the hybrid power system to be generally less efficient when supplying AC and DC loads, but greater than 5% more efficient when only supplying DC load. Although the hybrid AC/DC system is approximately 70% more expensive, it is still the final recommended design due to potential efficiency gains and in an effort to provide educational opportunities that may lead to further efficiency gains in future hybrid AC/DC power systems.
|
242 |
A Study Into the Use of Microprocessor Relays for Motor Operated Valve (MOV) Electrical Protection in Nuclear Power PlantsTuccillo, James Andrew 01 March 2011 (has links) (PDF)
Motor Operated Valves (MOVs) are electro-mechanical components used to isolate, divert, or introduce fluid flow. The use of microprocessor relays for actuator motor electrical protection within nuclear power plants is the focus of this thesis and is implemented by providing a new and enhanced protection scheme that provides the adequate conservatism necessary to ensure valve operation while still maintaining electrical safety and continued operational availability. The comprehensive protection scheme is designed around an advanced microprocessor relay that has the ability to simulate the thermal overload conditions of a motor operating into a destructive thermal region. Through laboratory testing, the validity of this new protection scheme is tested using a simulation of common MOV degradations. Finally, this thesis addresses the design from a licensing basis perspective that follows Nuclear Regulatory Commission (NRC) guidance on the use of MOV thermal overload protective devices.
|
243 |
Evaluation of a Novel Axial Flux Variable Reluctance MachineHines, Derek Braden 01 June 2012 (has links) (PDF)
The objective of this thesis is to determine the feasibility of a novel axial flux variable reluctance machine design. The design aims to compete with prevalent rare-earth permanent magnet machines while also implementing an innovative torque ripple minimization strategy. Given the fundamental operating principles, a selection of dimensions, materials, and excitations are prepared for the machine. Special attention is given to the rotor profile which is crucial to operation. Finite element analysis software is used to evaluate a three-dimensional model in terms of inductance and torque. The ultimate potential of the machine is discussed and recommendations for improvement are proposed.
|
244 |
Boost Converter Inductor Sizing Effects on the Performance of MPPT AlgorithmsNonaka, Alan 01 August 2020 (has links) (PDF)
With solar power and other renewables set to take over the market in the coming decades, maximum power point tracking will be essential to optimizing power output. One underserved topic of research is the effect of inductor current ripple on performance of Maximum Power Point Tracking (MPPT) algorithms. Many new topologies are focused on decreasing the ripple from PV source to increase efficiency and power output. However, not much has been done to show ripple degrading performance of MPPT algorithms. This study uses a boost converter topology to test the performance of constant duty cycle step Perturb and Observe (PO), Incremental Conductance IC, and Constant Voltage (CV) PID over a range of inductor current ripple factor. Inductor current ripple is controlled solely by changing inductance. This study concluded that all three algorithms were quite robust and affected very little over an inductor current ripple factor range of 20% to 40%. One novel finding was increased duty cycle oscillation when the MPPT update and sample speed was faster than the boost converter response.
|
245 |
Smart Wall Plug Design for the DC House ProjectSibal, Edward Constant 01 December 2012 (has links) (PDF)
The DC House project at Cal Poly State University faces a challenge of supplying DC voltage to household appliances. Each appliance in the DC House constitutes a DC load that has a unique voltage and power rating, hence the need to develop a smart DC wall plug that will automatically adjust to the operating voltage required by any DC load. This thesis entails a proof of concept design of the smart DC wall plug which can automatically detect an appliance’s voltage rating. The design employs a dc-dc converter in conjunction with a microcontroller to sense load current to properly adjust the required load voltage. Hardware implementation to demonstrate the functionality of the smart wall plug was developed. Results performed on several dc loads show that the smart wall plug is able to adjust to the required load voltage within an acceptable range. An algorithm to improve the accuracy was attempted and presented along with the results. Further recommendations to improve the current design will also be discussed.
|
246 |
Zero Voltage Switching Hybrid Voltage Divider ConverterJeong, Timothy 01 June 2021 (has links) (PDF)
This project proposes a new hybrid voltage divider DC-DC converter that utilizes switching capacitors and inductors to produce zero voltage switching (ZVS) at the turn on state of its switches. By achieving ZVS, the switching losses are significantly reduced; thus, increasing the overall efficiency of the converter at various loads. The goal for this thesis is to perform analysis of the operation of the converter, derive equations for sizing the main components, and demonstrate its functionality through computer simulation and hardware prototype. Results of the simulation and hardware testing show that the proposed converter produces the desired output voltage while providing the zero voltage switching benefits. The converter’s efficiency reaches above 92% starting from 1A load and continues to increase to 97.6% at 4A load. Overall, results from this thesis verifies the potential of the proposed converter as an alternative solution to achieve a very efficient DC-DC solution when half of the input voltage is required at the output without the use of complex feedback control circuitry.
|
247 |
Modeling and Analysis of the Effects of PCB Parasitics on Integrated DC-DC ConvertersFernandez, Darwin Domingo 01 June 2011 (has links) (PDF)
Load transients are prevalent in every electronic device including semiconductor memory, card readers, microprocessors, disc drives, piezoelectric devices, and digitally based systems. They are capable of producing voltage stress, introducing noise, and degrading device functionality. In order to avoid damage to the device, a feedback control loop is implemented with system compensation to regulate the output voltage deviations by the converter. Because designing compensation networks can be rather complicated, DC-DC converters with integrated feedback control topologies help minimize design time and complexity of converter compensation at the expense of design flexibility. This thesis widens the limitations of an integrated DC-DC converter with a stability optimization technique that utilizes the feedback network to create a phase boost centered at the bandwidth of the converter to increase the phase margin and improve its transient response. Ideal modeling verifies stability optimization while non-ideal modeling that introduces PCB parasitics to the control loop suggest an additional phase boost in the feedback network. Experimental data confirms this non-deal model for parasitic capacitances higher than calculated. The modified non-ideal model shows more accuracy compared to the experimental data which indicates that there may be PCB parasitics that is unaccounted for. Modeling the modified non-ideal model to high orders may yield more accuracy. This thesis gives both DC-DC converter and PCB layout designers insight and considerations into PCB effects on the stability of DC-DC converters and the optimization of integrated compensation.
|
248 |
IoT Camera System for Monitoring Strawberry FieldsSchoennauer, Simon 01 December 2020 (has links) (PDF)
A wireless imaging system for monitoring strawberry fields provides enough quality image data for computer vision algorithms to make meaningful yield predictions. This report contains a design for a wireless sensor network modified with mesh networking techniques to extend coverage range and a solar energy harvesting system to improve sensor node lifetime. A two hop system with six nodes is implemented in a laboratory environment validating the communication systems integrity over an 800’ range. Moving from a primary battery system to solar energy harvesting increases the module lifetime indefinitely.
|
249 |
A Multiphase Modified Boost Converter with Reduced Input Current Ripple: Combined CapacitorsNissan, Omri 01 June 2018 (has links) (PDF)
The delivery of high power and smaller footprints through a non-isolated topology demands for the use of multiphase topology in DC-DC converters. Multiphase reduces the ripple observed on both the input and output waveforms; however, it may not be enough to connect to sensitive power sources such as renewable energy sources. A single-phase modified boost converter demonstrates the ability to acquire very minimal input current ripple by addition of passive components. The expansion to multiphase topology is the next logical step for higher power application while furthering the low input current ripple benefit. In this thesis, the multiphase modified boost topology is compared with the multiphase standard boost topology to explore the benefits and trade-offs of the proposed topology. A 12V input to 19V output at 95W output power multiphase standard and modified boost converters were designed and constructed for the thesis. Results from theoretical calculations, computer simulations, and hardware implementations were then compared to evaluate their performances. Results show that compared to the standard boost, the modified boost yields significantly less input current ripple at 2% under full load condition while maintaining output voltage ripple of 5% and higher than 90% efficiency.
|
250 |
Cascaded Linear Regulator with Positive Voltage Tracking Switching RegulatorNghe, Brandon K 01 May 2020 (has links) (PDF)
This thesis presents the design, simulation, and hardware implementation of a proposed method for improving efficiency of voltage regulator. Typically, voltage regulator used for noise-sensitive and low-power applications involves the use of a linear regulator due to its high power-supply rejection ratio properties. However, the efficiency of a linear regulator depends heavily on the difference between its input voltage and output voltage. A larger voltage difference across the linear regulator results in higher losses. Therefore, reducing the voltage difference is the key in increasing regulator’s efficiency. In this thesis, a pre switching regulator stage with positive voltage tracking cascaded to a linear regulator is proposed to provide an input voltage to a linear regulator that is slightly above the output of the linear regulator. The tracking capability is needed to provide the flexibility in having different positive output voltage levels while maintaining high overall regulator’s efficiency. Results from simulation and hardware implementation of the proposed system showed efficiency improvement of up to 23% in cases where an adjustable output voltage is necessary. Load regulation performance of the proposed method was also overall better compared to the case without the output voltage tracking method.
|
Page generated in 0.0718 seconds