• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 41
  • 28
  • 24
  • 18
  • 16
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High power high frequency DC-DC converter topologies for use in off-line power supplies

Cliffe, Robert J. January 1996 (has links)
The development of a DC-DC converter for use in a proposed range of one to ten kilowatt off-line power supplies is presented. The converter makes good use of established design practices and recent technical advances. The thesis begins with a review of traditional design practices, which are used in the design of a 3kW, 48V output DC-DC converter, as a bench-mark for evaluation of recent technical advances. Advances evaluated include new converter circuits, control techniques, components, and magnetic component designs. Converter circuits using zero voltage switching (ZVS) transitions offer significant advantages for this application. Of the published converters which have ZVS transitions the phase shift controlled full bridge converter is the most suitable, and assessments of variations on this circuit are presented. During the course of the research it was realised that the ZVS range of one leg of the phase shift controlled full bridge converter could be extended by altering the switching pattern, and this new switching pattern is proposed. A detailed analysis of phase shift controlled full bridge converter operation uncovers a number of operational findings which give a better and more complete understanding of converter operation than hitherto published. Converter design equations and guidelines are presented and the effects of the new improvement are investigated by an approximate analysis. Computer simulations using PSPICE2 are carried out to predict converter performance. A prototype converter design, construction details and test results are given. The results obtained compare well to the predicted performance and confirm the advantages of the new switching pattern.
2

MOSFET CURRENT SOURCE GATE DRIVERS AND TOPOLOGIES FOR HIGH EFFICIENCY AND HIGH FREQUENCY VOLTAGE REGULATOR MODULES

ZHANG, ZHILIANG 23 April 2009 (has links)
With fast development of semiconductor industry, the transistors in microprocessors increase dramatically, which follows the Moore’s law. As a result, the operating voltages of the future microprocessors follow the trend of decreasing (sub 1V) while the demanding currents increase (higher than 100A). Furthermore, the high slew rates during the transient will reach 1200 A/us. All these impose a serious challenge on a Voltage Regulator (VR) or Voltage Regulator Module (VRM). In order to meet requirements of the next generation microprocessors, four new ideas are proposed in this thesis. The first contribution is an accurate analytical loss model of a power MOSFET with a Current-Source Driver (CSD). The impact of the parasitic components is investigated. Based on the proposed loss model, a general method to optimize the CSD is presented. With the proposed optimization method, the CSD improves the efficiency from 79.4% using the conventional voltage source driver to 83.6% at 12V input, 1.5V/30A output and 1MHz. The second contribution is a new continuous CSD for a synchronous buck converter. The proposed CSD is able to drive the control and Synchronous Rectifier (SR) MOSFETs independently with different drive currents enabling optimal design. At 12V input, 1.5 V/30A output and 1MHz, the proposed CSD improves the efficiency from 79.4% using a conventional voltage source driver to 83.9%. The third contribution is a new discontinuous CSD. The most important advantage of the new CSD is the small inductance (typically, 20nH at 1MHz switching frequency). A hybrid gate drive scheme for a synchronous buck converter is also proposed. The idea of the hybrid gate driver scheme is to use the CSD to achieve switching loss reduction for the control MOSFET, while use the conventional voltage source driver for the SR. At 12V input, 1.3V/25A output and 1MHz, the proposed CSD improves the efficiency from 80.7% using the voltage source driver to 85.4%. The final contribution is new self-driven zero-voltage-switching (ZVS) non-isolated full-bridge converters for 12V input VRM applications. The proposed converter achieves the duty cycle extension, ZVS operation and SRs gate energy recovery. At 12V input, 1.3V output and 1MHz, the proposed converter improves the efficiency from 80.7% using the buck converter to 83.6% at 50A. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2009-04-23 08:59:12.699
3

Minskning av switchförluster vid höga frekvenser i diodbrygga på PCB-kort

Hussein, Ivan January 2017 (has links)
Arbetets huvudmål var att utvärdera Zero Voltage Switching, ZVS, på ett dubbelsidigt kretskort. Där ingick att anpassa en H-brygga till ZVS som är populär i industrier samt elektronikkonstruktion. Mätningarna och analyserna gjordes för båda delarna. Med hjälp av en mikrokontroller kunde man ändra på styrsignalernas Duty Cycle och frekvens. Framtagen kretskort har sedan använts till att utföra mätningar vid frånslag där falltider, energiåtgång och switchförluster har jämförts med liknande krets på kopplingssplatta och i simulering. Nyckelord: switchförluster, H-brygga, zero voltage switching.
4

Bidirectional DC-DC converter for aircraft electric energy storage systems

Ramasamy, Thaiyal Naayagi January 2010 (has links)
Future aircraft are likely to employ electrically powered actuators for adjusting flight control surfaces, and other high power transient loads. To meet the peak power demands of aircraft electric loads and to absorb regenerated power, an ultracapacitor-based energy storage system is examined in which a bidirectional dual active bridge DC-DC converter is used. This Thesis deals with the analysis, design, development and performance evaluation of the dual active bridge (DAB) converter, which can act as an interface between the ultracapacitor energy storage bank and the aircraft electrical power network. A steady-state analysis is performed for the DAB converter producing equations for the device RMS and average currents and the peak and RMS currents in the coupling inductor. This analysis focuses on understanding converter current shapes and identifying the zero-voltage switching (ZVS) boundary condition. A converter prototype was designed and built and its operation verified through SABER simulations confirming the accuracy of the analysis. Experimental results are included to support the analysis for 7kW, 20 kHz operating conditions giving a measured efficiency of 90%. To enhance the performance of the converter under light-loads, a quasi-square-wave mode of operation is proposed in which a dead-time is introduced either on the transformer primary voltage, or on the transformer secondary voltage, or simultaneously on both transformer primary and secondary. A similar detailed analysis as that for square-wave operation has been undertaken for all three cases and the converter performance was analysed focusing on ZVS operating range, impact of the RMS/peak inductor currents and converter efficiency. The theoretical work was validated through SABER simulations and proof of concept experimental measurements at 1kW, 20 kHz, which resulted in converter efficiency well above 91%. A 9%-17% improvement in efficiency and a 12%-17% improvement in ZVS operating range over square-wave operation are observed for similar operating conditions. Furthermore, a novel bidirectional current control technique for the DAB converter is presented. A SABER simulation has been performed and the converter operation is validated for square-wave and quasi-square-wave modes under steady-state and transient conditions.
5

Digitally Controlled Zero-Voltage-Switching Quasi-resonant Buck Converter

Luc, Brian R 01 February 2015 (has links) (PDF)
ABSTRACT Digitally-Controlled Two-Phase Zero-Voltage-Switching Quasi-Resonant Buck Converter Brian Luc This thesis entails the design, construction, and performance analysis of a digitally-controlled two-phase Zero-Voltage Switching Quasi-Resonant (ZVS-QR) buck converter. The converter is aimed to address the issues associated with powering CPUs operating at lower voltage and high current. To evaluate its performance, the Two-Phase ZVS-QR buck converter is compared against a traditional Two-Phase buck converter. The design procedure required to implement both converters through utilizing the characterization curve and formulas derived from their circuit configurations will be presented. Computer simulation of the Two-Phase ZVS-QR buck converter is provided to exhibit its operation and potential for use in low voltage and high current applications. In addition, hardware prototypes for both ZVS-QR and traditional buck converters are constructed utilizing a Programmable Interface Controller (PIC). Results from hardware tests demonstrate the success of using digital controller for the 60W 12VDC to 1.5VDC ZVS-QR buck converter. Merits and drawbacks based on the operation and performance of both converters will also be assessed and described. Further work to improve the performance of ZVS-QR will also be presented. Keywords: Buck Converter; Zero-Voltage-Switching; Multi-Phase; Efficiency; Switching Loss
6

Zero Voltage Switching Hybrid Voltage Divider Converter

Jeong, Timothy 01 June 2021 (has links) (PDF)
This project proposes a new hybrid voltage divider DC-DC converter that utilizes switching capacitors and inductors to produce zero voltage switching (ZVS) at the turn on state of its switches. By achieving ZVS, the switching losses are significantly reduced; thus, increasing the overall efficiency of the converter at various loads. The goal for this thesis is to perform analysis of the operation of the converter, derive equations for sizing the main components, and demonstrate its functionality through computer simulation and hardware prototype. Results of the simulation and hardware testing show that the proposed converter produces the desired output voltage while providing the zero voltage switching benefits. The converter’s efficiency reaches above 92% starting from 1A load and continues to increase to 97.6% at 4A load. Overall, results from this thesis verifies the potential of the proposed converter as an alternative solution to achieve a very efficient DC-DC solution when half of the input voltage is required at the output without the use of complex feedback control circuitry.
7

Design and implementation of Silicon-Carbide-based Four-Switch Buck-Boost DCDC Converter for DC Microgrid Applications

Bai, Yijie 07 February 2023 (has links)
With the increasing demand for clean and renewable energy, new distribution network concepts, such as DC microgrids and distributed power generation networks, are being developed. One key component of such networks is the grid-interfacing DC-DC power converter that can transfer power bi-directionally while having a wide range of voltage step-up and step-down capabilities. Also, with the proliferated demand for electric vehicle chargers, battery energy storage systems, and solid-state transformers (SST), the bi-directional high-power DC-DC converter plays a more significant role in the renewable energy industry. To satisfy the requirements of the high-power bi-directional wide-range DC-DC converter, different topologies have been compared in this thesis, and the four-switch buck-boost (FSBB) converter topology has been selected as the candidate. This work investigates the operation principle of the FSBB converter, and a digital real-time low-loss quadrangle current mode(QCM) control implementation, which satisfies the zero-voltage-switching (ZVS) requirements, is proposed. With the QCM control method, the FSBB converter efficiency can be further increased by reducing the inductor RMS current and device switching loss compared to traditional continuous current mode(CCM) control and discontinuous current mode(DCM) control. Although the small signal model has been derived for FSBB under CCM control, the small ripple approximation that was previously used in the CCM model no longer applies in the QCM model and causing the model to be different. To aid the control system compensator design, QCM small signal model is desired. In this thesis, a small signal model for FSBB under QCM control is proposed. A 50 kW silicon carbide (SiC) based grid-interfacing converter prototype was constructed to verify the QCM control implementation and small signal model of the FSBB converter. For driving the 1.2kV SiC modules, an enhanced gate driver with fiber optic (FO) based digital communication capability was designed. Digital on-state and off-state drain-source voltage sensors and Rogowski coil-based current sensors are embedded in the gate driver to minimize the requirement for external sensors, thus increasing the power density of the converter unit. Also, Rogowski-coil-based current protection and drain-source voltage-based current protection is embedded in the gate driver to prevent SiC switching device from damage. / Master of Science / The renewable energy sector is driving the development of new distribution networks, such as DC microgrids and distributed power generation networks. One crucial component of these networks is the grid-interfacing DC-DC power converter, which can transfer power in both directions while maintaining a wide voltage range. This study evaluates various topologies and selects the four-switch buck-boost (FSBB) converter topology to meet the demands of high-power, bi-directional, and wide-range DC-DC converters. This work analyzed the operation of the FSBB converter and proposed a novel simplified quadrangle current mode (QCM) control implementation. With the QCM control method, the FSBB converter efficiency can be further improved by reducing losses compared to conventional control methods. This study also provides a small signal model, which can be used to aid the control loop compensator design where application of FSBB converter is required. A 50 kW silicon carbide (SiC) based grid-interfacing converter prototype, which was constructed to validate the proposed QCM control implementation and small signal model of the FSBB converter. As part of the converter unit,the enhanced gate driver design and implementation is presented in this thesis. This gate driver is designed with fiber optic-based digital communication, drives the wide bandgap SiC modules. The gate driver also features embedded digital on-state and off-state drain-source voltage sensors and non-intrusive current sensors to minimize external sensor requirements, thereby increasing the power density of the converter unit. The gate driver also incorporates high bandwidth current protection and drain-source voltage-based current protection to protect the SiC switching device from damage.
8

Soft-switching techniques for high-power PWM converters

Mao, Hengchun 05 October 2007 (has links)
Soft-switching techniques can significantly reduce the switching loss and switching stresses of the power semiconductor devices in a power converter. This work presents several soft-switching topologies for high power PWM converters. These new topologies achieve soft-switching functions with minimum increase of device voltage/current stresses and converter circulating energy, and thus have advantages over conventional techniques in efficiency, power density, reliability, and cost of power converters. The improved zero-current transition (ZCT) converters achieve zero-current switching at both turn-on and turn-off for all main switches and auxiliary switches. These converters significantly reduce the switching loss and stress of the power semiconductor devices, while have a voltage/current stress and circulating energy similar to a PWM converter’s. The analysis, design, and experimental verification are presented. The three-phase zero-voltage transition (ZVT) boost rectifiers/voltage source inverters are developed with simple auxiliary circuits. Unlike most existing three-phase soft-switching techniques, these new topologies achieve soft-switching functions without overcharging the resonant inductors, and realize the benefits of soft-switching operation with minimum extra main switch turn-offs and fixed auxiliary circuit control timing. The operation principles of the developed techniques are experimentally verified, and their efficiency performances are evaluated with experiments and computer simulation. The three-phase ZVT buck rectifier topologies developed in this work achieves zero-voltage turn-on for all main switches with an optimum modulation schemes and simple auxiliary circuits. The auxiliary circuits, which are connected directly to each main switch, can also absorb the parasitic resonance of the bridge arms, and keep the voltage stress of the power devices at the minimum. The analysis and simulation results are presented to verify the converter operation. New ZVT dc-link schemes for three-phase ac-dc-ac converters are investigated. With coordinated control of the ac-dc converter and the dc-ac converter, a set of simple auxiliary circuit can provide soft-switching function for all switches in both the ac-dc converter and the dc-ac converter. The power loss in the auxiliary circuit is also significantly lower than existing dc-link soft-switching schemes. Simulation with experimentally obtained device switching loss data proves that significant efficiency improvement can be achieved with the new ZVT dc-link techniques. New ZVT and ZCT techniques for three-level converters are also developed. The auxiliary circuits are not in the main power path, and allow the converters to be controlled with optimum PWM schemes. Analysis and simulation results are presented to demonstrate the operation principles and advantages of soft switching in three-level converters. / Ph. D.
9

Zero Voltage Switching (ZVS) Turn-on Triangular Current Mode (TCM) Control for AC/DC and DC/AC Converters

Haryani, Nidhi 10 January 2020 (has links)
One of the greatest technological challenges of the world today is reducing the size and weight of the existing products to make them portable. Specifically, in electric vehicles such as electric cars, UAVs and aero planes, the size of battery chargers and inverters needs to be reduced so as to make space for more parts in these vehicles. Electromagnetic Interference (EMI) filters take up a more than 80 % of these power converters, the size of these filters can be reduced by pushing the switching frequency higher. High frequency operation (> 300 kHz) leads to a size in reduction of EMI filters though it also leads to an increase in switching losses thus compromising on efficiency. Thus, soft switching becomes necessary to reduce the losses, adding more electrical components to the converter to achieve soft switching is a common method. However, it increases the physical complexity of the system. Hence, advanced control methods are adopted for today's power converters that enable soft switching for devices specifically ZVS turn-on as the turn-off losses of next generation WBG devices are negligible. Thus, the goal of this research is to discover novel switching algorithms for soft turn-on. The state-of the-art control methods namely CRM and TCM achieve soft turn-on by enabling bi-directional current such that the anti-parallel body diode starts conducting before the device is turned on. CRM and TCM result in variable switching frequency which leads to asynchronous operation in multi-phase and multi-converter systems. Hence, TCM is modified in this dissertation to achieve constant switching frequency, as the goal of this research is to be able to achieve ZVS turn-on for a three-phase converter. Further, Triangular Current Mode (TCM) to achieve soft switching and phase synchronization for three-phase two-level converters is proposed. It is shown how soft switching and sinusoidal currents can be achieved by operating the phases in a combination of discontinuous conduction mode (DCM), TCM and clamped mode. The proposed scheme can achieve soft switching ZVS turn-on for all the three phases. The algorithm is tested and validated on a GaN converter, 99% efficiency is achieved at 0.7 kW with a density of 110 W/in3. The discussion of TCM in current literature is limited to unity power factor assumption, however this limits the algorithm's adoption in real world applications. It is shown how proposed TCM algorithm can be extended to accommodate phase shift with all the three phases operating in a combination of DCM+TCM+Clamped modes of operation. The algorithm is tested and validated on a GaN converter, 99% efficiency is achieved at 0.7 kVA with a density of 110 W/in3. TCM operation results in 33 % higher rms current which leads to higher conduction losses, as WBG devices have lower on-resistance, these devices are the ideal candidates for TCM operation, hence to accurately obtain the device parameters, a detailed device characterization is performed. Further, proposed TCM+DCM+Clamped control algorithm is extended to three-level topologies, the control is modified to extract the advantage of reduced Common Mode Voltage (CMV) switching states of the three-level topology, the switching frequency can thus be pushed to 3 times higher as compared to state-of-the-art SVPWM control while maintaining close to 99 % efficiency. Two switching schemes are presented and both of them have a very small switching frequency variation (6%) as compared to state-of-the-art methods with >200% switching frequency variation. / Doctor of Philosophy / Power supplies are at the heart of today's advanced technological systems like aero planes, UAVs, electrical cars, uninterruptible power supplies (UPS), smart grids etc. These performance driven systems have high requirements for the power conversion stage in terms of efficiency, density and reliability. With the growing demand of reduction in size for electromechanical and electronic systems, it is highly desirable to reduce the size of the power supplies and power converters while maintaining high efficiency. High density is achieved by pushing the switching frequency higher to reduce the size of the magnetics. High switching frequency leads to higher losses if conventional hard switching methods are used, this drives the need for soft switching methods without adding to the physical complexity of the system. This dissertation proposes novel soft switching techniques to improve the performance and density of AC/DC and DC/AC converters at high switching frequency without increasing the component count. The concept and the features of this new proposed control scheme, along with the comparison of its benefits as compared to conventional control methodologies, have been presented in detail in different chapters of this dissertation.
10

Carregador de Baterias MonofÃsico Para AplicaÃÃo em VeÃculos ElÃtricos / âSingle-Phase Battery Charger Feasible for Electric Vehicles Applicationsâ,

CÃsar Orellana Lafuente 28 June 2011 (has links)
Este trabalho apresenta o estudo de um carregador de baterias monofÃsico aplicado a veÃculos elÃtricos. Este carregador à composto por dois estÃgios de processamento de energia e um circuito digital de supervisÃo para controlar a tensÃo sobre o banco de baterias e a corrente de recarga das mesmas. O primeiro estÃgio consiste de um conversor CA-CC bridgeless com caracterÃstica de alto fator de potÃncia, e o segundo estÃgio à representado por um conversor CC-CC fullbridge com isolamento em alta frequÃncia e comutaÃÃo sob tensÃo nula (Zero Voltage Switching â ZVS). Para ambos os conversores, foi realizada uma anÃlise qualitativa e quantitativa, bem como apresentados exemplos de projeto para facilitar o dimensionamento dos componentes. Finalmente, com os componentes escolhidos, foi montado um protÃtipo que permite carregar de uma atà oito baterias de 12 V conectadas em sÃrie. O sistema apresenta como especificaÃÃes: tensÃo de entrada alternada de 220 VÂ15%; tensÃo de saÃda contÃnua de 120 V; corrente de saÃda contÃnua de 20 A; e potÃncia mÃdia de saÃda de 2,4 kW. / This work presents a single-phase battery charger for electric vehicles. This converter is composed by two energy processing stages and a digital circuit to control the voltage across the batteries and their respective charging current. The first stage is a high power factor ACDC bridgeless converter, while the second one consists on a ZVS (Zero Voltage Switching) high frequency isolated DC-DC full-bridge converter. For both converters, the qualitative and quantitative analyses have been performed, as well as design examples have been presented in order to ease the components calculation. Finally, a prototype that allows charging up to eight series-connected 12 V batteries has been built. The system specifications are: AC input voltage of 220 V Â15%; DC output voltage of 120 V; DC output current of 20 A; and average output power of 2.4 kW.

Page generated in 0.0816 seconds