Spelling suggestions: "subject:"power ratio"" "subject:"lower ratio""
1 |
Precoding in MIMO, OFDM to reduce PAPR (Peak to Average Power Ratio)Ishaq, Muhammad Irfan, Khan, Yasir Ali, Gul, Muhammad Talha January 2012 (has links)
One of the critical issues of systems utilizing Orthogonal Frequency Division Multiplexing (OFDM) is the high peak to the average power ratio of OFDM signals. We have used Precoding as a way to mitigate the PAPR problem. Furthermore the performance of Precoded OFDM in fading multi-path channels has been studied. This thesis is based on an efficient technique for reducing the PAPR of OFDM signals. The proposed technique is data-independent and thus, does not require new processing and optimization for each transmitted OFDM block. The reduction in PAPR of the OFDM signal is obtained through a proper selection of a Precoding scheme that distributes the power of each modulated symbol over the OFDM block. The obtained results show that this Precoding scheme is an attractive solution to the PAPR problem of OFDM signals.
|
2 |
Development of Passenger Car Equivalents for Basic Freeway SegmentsIngle, Anthony 21 July 2004 (has links)
Passenger car equivalents (PCEs) are used in highway capacity analysis to convert a mixed vehicle flow into an equivalent passenger car flow. This calculation is relevant to capacity and level of service determination, lane requirements, and determining the effect of traffic on highway operations. The most recent Highway Capacity Manual 2000 reports PCEs for basic freeway segments according to percent and length of grade and proportion of heavy vehicles. Heavy vehicles are considered to be either of two categories: trucks and buses or RVs. For trucks and buses, PCEs are reported for a typical truck with a weight to power ratio between 76.1 and 90.4 kg/kW (125 and 150 lb/hp). The weight to power ratio is an indicator of vehicle performance. Recent development of vehicle dynamics models make it possible to define PCEs for trucks with a wider variety of weight to power ratios. PCEs were calculated from the relative impact of trucks on traffic density using the simulation model INTEGRATION. The scope of this research was to evaluate PCEs for basic freeway segments for trucks with a broader range of weight to power ratios. Such results should make freeway capacity analysis more accurate for mixed vehicle flow with a non-typical truck population. In addition, the effect of high proportion of trucks, pavement type and condition, truck aerodynamic treatment, number of freeway lanes, truck speed limit, and level of congestion was considered. The calculation of PCEs for multiple truck weight to power ratio populations was not found to be different from single truck weight to power ratio populations. The PCE values were tabulated in a compatible format to that used in the Highway Capacity Manual 2000. / Master of Science
|
3 |
FM, PM and NPR CalculationsGallupe, Gary 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1993 / Riviera Hotel and Convention Center, Las Vegas, Nevada / System performance can be ascertained via a number of parameters; one of which is
Signal-to-Noise ratio (SNR). SNR is the ratio of the value of the signal to the value of
the noise. It is generally expressed in decibels and usually a function of the system
bandwidth. Another measure of performance is the Noise-Power ratio (NPR). NPR is
the ratio of the noise level within a specific measurement channel when noise is
applied to all channels, to the level that is measured within the specific channel with
noise applied to all of the channels but not the specific channel.
|
4 |
A PAPR Reduction Scheme Without Side Information in Pilot-Aided OFDM SystemsKuo, Keng-wei 26 August 2010 (has links)
High peak to average power ratio (PAPR) is one of the major drawbacks in
orthogonal frequency division multiplexing (OFDM) systems. In recently years,
various methods have been proposed to reduce the PAPR performance. The
selected mapping (SLM) scheme is perhaps the most popular one because it
provides outstanding PAPR reduction performance. In addition, the subcarrier
magnitude remains the same in the SLM scheme. However, there are two major
shortcomings in the SLM scheme. First of all, it requires a number of inverse fast
Fourier transforms (IFFTs) to produce candidate signals, dramatically
increasing the computational complexity. In addition, side information has to be
transmitted to the receiver to indicate the candidate signal that results in the best
PAPR, leading to the decrease in bandwidth utilization. To overcome these two
drawbacks, this thesis proposes a novel SLM scheme that does not need side
information. The proposed scheme is based on a low complexity SLM scheme
[C.-P. Li, S.-H. Wang, and C.-L. Wang, ¡§Novel low-complexity SLM schemes for
PAPR reduction in OFDM systems,¡¨ IEEE Trans. Signal Process., vol. 58, no. 5,
pp. 2916¡V2921, May 2010] in pilot-aided OFDM system. Simulation experiments
are conducted to verify the performance of the proposed scheme. It is shown that
the bit error rate (BER) performance of the proposed scheme is very similar to
that of the traditional SLM scheme with perfect knowledge of the side
information. Therefore, the proposed scheme not only has the advantages of low
complexity and high bandwidth utilization, but also has a superior BER
performance.
|
5 |
A New Active Constellation Extension Scheme for PAPR Reduction in OFDM SystemsHuang, Bo-Rong 23 August 2011 (has links)
High peak-to-average power ratio (PAPR) is a serious drawback in orthogonal frequency division multiplexing (OFDM) systems. Various methods have been proposed to reduce PAPR, active constellation extension (ACE) scheme has excellent performance. There are two schemes were proposed in traditional ACE, the one of which is ACE-Smart Gradient-Project (SGP) which can significantly reduce PAPR through first iteration. In fact, optimal solution is not obtained in ACE-SGP, we find the scheme can be formulated as convex optimization problem, that is, we can find out optimal solution to minimize PAPR by convex optimization algorithm. Two proposed schemes are based on two low complexity schemes, respectively, and they were proved to satisfy convex optimization problem. Although the power of transmission and complexity of optimization algorithm in the proposed schemes are higher than that of the traditional ACE-SGP scheme, but proposed schemes has proper improvement in PAPR reduction.
|
6 |
Study on Peak-to-Average Power Ratio of OFDM SystemsHung, Kuen-Ming 05 September 2004 (has links)
In recent years, the development of OFDM system has received a lot of attention. Some examples of existing systems where OFDM system is used are digital audio broadcasting, high-definition television terrestrial broadcasting, asymmetric digital subcarrier lines and so on. There are several reasons for using OFDM systems. First, OFDM system is an efficient way to deal with multipath effect. Under a fixed amount of delay spread, the implementation complexity of OFDM system is much less than that of single-carrier system. The reason is that OFDM system can simply use guard time to process delay spread without a complex equalizer. Second, OFDM system can achieve high data rate to transmit by using large number of subcarriers. Third, OFDM system can also efficiently combat with narrow band interference. On the other hand, OFDM system also has two main drawbacks. One is more sensitive to frequency offset, the other is higher PAPR.
This thesis focuses on the PAPR problem. Pulse shaping method is an effective way to solve this problem. It can be used for any number of subcarriers of OFDM systems, so it is very flexible. It doesn¡¦t have any additional IFFTs in comparison to the selected mapping or partial transmit sequence method. Its implementation is simpler. And because it also doesn¡¦t distort the OFDM symbols, its bit error performance should be better than the clipping method. According to the pulse shaping method, we get a better waveform that can make the PAPR of OFDM symbols do not exceed about 2.
|
7 |
Novel Low-Complexity SLM Schemes for PAPR Reduction in OFDM SystemsLee, Kun-Sheng 10 August 2008 (has links)
Selected mapping (SLM) schemes are commonly employed to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It has been shown that the computational complexity of the traditional SLM scheme can be substantially reduced by adopting conversion vectors obtained by using the inverse fast Fourier transform (IFFT) of the phase rotation vector in place of the conventional IFFT operations [21]. Unfortunately, however, the elements of these phase rotation vectors of the conversion vectors in [21] do not generally have an equal magnitude, and thus a significant degradation in the bit error rate (BER) performance is incurred. This problem can be remedied by utilizing conversion vectors having the form of a perfect sequence. This paper presents three novel classes of perfect sequence, each of which comprises certain base vectors and their cyclic-shifted versions. Three novel low-complexity SLM schemes are then proposed based upon the unique structures of these perfect sequences. It is shown that while the PAPR performances of the proposed schemes are marginally poorer than that of the traditional SLM scheme, the three schemes achieve an identical BER performance and have a substantially lower computational complexity.
|
8 |
Novel Low-Complexity SLM Schemes for PAPR Reduction in OFDMA Uplink SystemsXie, Jia-Cheng 10 August 2008 (has links)
One of the major drawbacks of multi-carrier systems is the high peak-to-average power ratio (PAPR) of the transmitted signals. In this paper, the proposed novel low-complexity selective mapping (SLM) schemes are applicable to interleaved-4 orthogonal frequency division multiple access (OFDMA) uplink systems for PAPR reduction. The novel scheme just needs one inverse fast Fourier transform (IFFT) block because that the phases of the transmitted signals in frequency domain are rotated by circular convolution with conversion vectors in time domain. Moreover, a special set of conversion vectors are proposed in novel scheme, which are not only computed with low complexity but also reduce the PAPR effectively. In proposed scheme, different conversion vectors and appropriate subcarriers mapping are picked up for different users. The scheme supplies a practicable low-complexity method for PAPR reduction in interleaved-4 OFDMA uplink systems. Besides, the bit error rate (BER) performance is as good as the SLM scheme.
|
9 |
EFFEKTER AV MAXIMAL ISOMETRISK POST ACTIVATION POTENTIATION PÅ DYNAMIC STRENGTH INDEX / Effects of maximal isometric post activation potentiation on dynamic strength indexTapper, Jesper, Åkerblom, Oscar January 2018 (has links)
Introduktion: Dynamic Strength Index är ett ratio som beskriver en individs förhållande mellan maximal och explosiv styrka. Post-activation potentiation (PAP) är ett fenomen där en förberedande aktivitet, exempelvis knäböj, används för att få en prestationsförbättring i en kommande aktivitet. Syftet med denna studie var att undersöka om (a) isometriska partiella knäböj (IPK) påverkar Dynamic Strength Index-ration (DSI), (b) IPK påverkar hopphöjd eller maximal kraft i CMJ, c) IPK påverkar maximal kraft i IMTP, (d) det finns någon signifikant korrelation mellan DSI-ratio och PAP-effekt. Metod: Fyra manliga och fyra kvinnliga beachvolleybollspelare (ålder 24.2 ± 3.8 år, vikt 72.7 ± 11.5 kg, längd 179.3 ± 9.2 cm) deltog i en counterbalanced measure design studie med två testtillfällen. Deltagarna utförde countermovement jump (CMJ) på kraftplattor och isometric mid-thigh-pull (IMTP) med en lastcell under båda testdagarna DSI och DSIPAP. Under DSIPAP utfördes även IPK som en förberedande aktivitet. Resultat: Resultaten visade ingen signifikant skillnad på DSI-ratio mellan testtillfällena DSI och DSIPAP (p=0.42). Resultaten för CMJ (cm) visade en lägre hopphöjd vid DSIPAP och en signifikant skillnad (p=0.042). Ingen signifikant skillnad för varken CMJ PF (p=0.96) eller IMTP PF (p=0.20) mellan DSI och DSIPAP hittades. Resultaten visade inte heller någon signifikant korrelation mellan DSI-ratio och PAP-effekt för CMJ peak power (r=-0.38) och CMJ hopphöjd (r=-0.21). Konklusion: Maximala isometriska knäböj verkar varken påverka DSI-ratio, CMJ PF eller IMTP PF och hade en negativ påverkan på hopphöjd för beachvolleyspelare. Resultaten i den här studien stöder tidigare forskning att en möjlig negativ korrelation mellan styrka-effekt-ratio och PAP-effekt. Framtida studier behövs för att undersöka det närmare. / Introduction: Dynamic Strength Index (DSI) is a ratio which describes an individuals relationship between maximal and explosive strength. Post-activation potentiation (PAP) is a phenomenon where a conditioning activity, i.e. squats, is used to enhance a subsequent activity. The purpose of this study was to investigate if (a) isometric partial squats (IPS) could affect the DSI ratio, (b) IPS affects jump height or peak force in Countermovement jump (CMJ), (c) IPS will affect peak force in isometric mid thigh-pull (IMTP), (d) there is a significant correlation between DSI-ratio and PAP-effect. Methods: Four male and four female beach volleyball players (age 24.2 ± 3.8 years, weight 72.7 ± 11.5 kg, length 179.3 ± 9.2 cm) participated in a counterbalanced measure design study consisting of two experimental trials. The participants performed countermovement jump (CMJ) on force plates and isometric mid-thigh pull (IMTP) with a load cell during both trial days DSI and DSIPAP. During DSIPAP participants also performed IPS as a conditioning activity. Results: Results showed no significant difference on the DSI-ratio between the trials DSI and DSIPAP (p=0.42). Results for CMJ (cm) showed a decreased jump height at DSIPAP and a significant difference (p=0.042). No significant difference for neither CMJ PF (p=0.96) nor IMTP PF (p=0.20) between the trials were found. No significant correlation were found between DSI-ratio and PAP-effect neither for CMJ peak power (r=-0.38) nor CMJ jump height (r=-0.21). Conclusion: Maximal isometric squats does not seem to effect DSI-ratio, CMJ PF, CMJ PP nor IMTP PF but had a negative effect on jump height in CMJ for beach volleyball players. The findings in this study supports previous studies that a possible negative correlation exists between strength-power-ratio and PAP-effect. Future studies are required to investigate this further.
|
10 |
Optimizing LDPC codes for a mobile WiMAX system with a saturated transmission amplifierSalmon, Brian Paxton 26 January 2009 (has links)
In mobile communication, the user’s information is transmitted through a wireless communication link that is subjected to a range of deteriorating effects. The quality of the transmission can be presented by the rate of transfer and the reliability of the received stream. The capacity of the communication link can be reached through the use of channel coding. Channel coding is the method of adding redundant information to the user’s information to mitigate the deteriorating effects of the communication link. Mobile WiMAX is a technology that makes use of orthogonal frequency division multiplexing (OFDM) modulation to transmit information over a wireless communication channel. The OFDM physical layer has a high peak average to power ratio (PAPR) characteristic that saturates the transmitter’s amplifier quite easily when proper backoff is not made in the transmission power. In this dissertation an optimized graph code was used as an alternative solution to improve the system’s performance in the presence of a saturated transmission’s amplifier. The graph code was derived from a degree distribution given by the density evolution algorithm and provided no extra network overhead to implement. The performance analysis resulted in a factor of 10 improvement in the error floor and a coding gain of 1.5 dB. This was all accomplished with impairments provided by the mobile WiMAX standard in the construction of the graph code. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
|
Page generated in 0.0644 seconds