• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INTEGRATING ELECTRIC ROADWAYS INTO THE ELECTRIC POWER SYSTEM: A MULTI-SCALE SPATIOTEMPORAL EVALUATION

Diala Anwar Eid Haddad (17677794) 20 December 2023 (has links)
<p dir="ltr">Electric roadways (ERs) represent a new paradigm for electrified transportation that is</p><p dir="ltr">enabled by the emerging dynamic (in-motion) wireless power transfer technology. Large-scale</p><p dir="ltr">integration of DWPT systems into power grids can pose a problem due to its high-power</p><p dir="ltr">requirements, significant number of power electronic converters and spatial concentration.</p><p dir="ltr">Despite their potential magnitude, the operational impacts of DWPT on the power grid have</p><p dir="ltr">not been fully studied in the literature. This dissertation contributes to our understanding</p><p dir="ltr">of how ERs could be successfully integrated with the electric power system at a diverse range</p><p dir="ltr">of spatial and temporal levels.</p><p dir="ltr">On a macroscopic level, a framework for assessing the financial viability of ERs is proposed.</p><p dir="ltr">Annual ER load estimations from traffic flow models of electric vehicles are used to</p><p dir="ltr">generate energy forecasts and carry out a financial evaluation. These models are also used to</p><p dir="ltr">plan distribution system capacity expansion. On a mesoscopic level, a data-driven design of</p><p dir="ltr">ERs and their interconnection with the distribution grid is presented. A data-based stochastic</p><p dir="ltr">traffic flow model is developed and used for designing the interconnection of the DWPT</p><p dir="ltr">system with the distribution grid ensuring adequate power transmission to high penetration</p><p dir="ltr">levels of heavy-duty trucks. The model is also used for conducting a series of quasi-steady</p><p dir="ltr">state studies on the power distribution system. On a microscopic level, a methodology for</p><p dir="ltr">modeling ER systems for time-domain simulations is proposed. Dynamic component models</p><p dir="ltr">are developed for the DWPT system. Power electronics are modeled using average-value</p><p dir="ltr">representations and integrated with models of the distribution grid. The models are used for</p><p dir="ltr">time-domain system simulations, transient analysis, fault analysis and power quality studies.</p><p dir="ltr">Theoretical analysis as well as numerical case studies and simulations of the proposed</p><p dir="ltr">methodologies are presented.</p>

Page generated in 0.1006 seconds