• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Power system oscillatory instability and collapse prediction

Al-Ashwal, Natheer Ali Mohammed January 2012 (has links)
This thesis investigates the capabilities of the Collapse Prediction Relay (CPR-D) and also investigates the use of system identification for detection of oscillatory instability. Both the CPR-D and system identification are based on system measurements and do not require modelling of the power system. Measurement based stability monitors can help to avoid instability and blackouts, in cases where the available system model can not predict instability. The CPR-D uses frequency patterns in voltage oscillation to detect system instability. The relay is based on non-linear dynamics Theory. If a collapse is predicted, measures could be taken to prevent a blackout. The relay was tested using the output of simulators and was later installed in a substation. The data from laboratory tests and site installations is analysed enabling a detailed evaluation of the CPR-D.Oscillatory instability can be detected by monitoring the damping ratio of oscillations in the power system. Poor damping indicates a smaller stability margin. Subspace identification is used to estimate damping ratios. The method is tested under different conditions and using several power system models. The results show that using several measurements gives more accurate estimates and requires shorter data windows. A selection method for measurements is proposed in the thesis.
2

Accounting for the Effects of Power System Controllers and Stability on Power Dispatch and Electricity Market Prices

Kodsi, Sameh January 2005 (has links)
Recently, the widespread use of power system controllers, such as PSS and FACTS controllers, has led to the analysis of their effect on the overall stability of power systems. Many studies have been conducted to allocate FACTS controllers so that they achieve optimal power flow conditions in the context of Optimal Power Flow (OPF) analysis. However, these studies usually do not examine the effect of these controllers on the voltage and angle stability of the entire system, considering that the types of these controllers and their control signals, such as reactive power, current, or voltage, have significant effect on the entire system stability. <br /><br /> Due to the recent transition from government controlled to deregulated electricity markets, the relationship between power system controllers and electricity markets has added a new dimension, as the effect of these controllers on the overall power system stability has to be seen from an economic point of view. Studying the effect of adding and tuning these controllers on the pricing of electricity within the context of electricity markets is a significant and novel research area. Specifically, the link among stability, FACTS controllers and electricity pricing should be appropriately studied and modelled. <br /><br /> Consequently, in this thesis, the focus is on proposing and describing of a novel OPF technique which includes a new stability constraint. This technique is compared with respect to existent OPF techniques, demonstrating that it provides an appropriate modelling of system controllers, and thus a better understanding of their effects on system stability and energy pricing. The proposed OPF technique offers a new methodology for pricing the dynamic services provided by the system's controllers. Moreover, the new OPF technique can be used to develop a novel tuning methodology for PSS and FACTS controllers to optimize power dispatch and price levels, as guaranteeing an adequate level of system security. All tests and comparisons are illustrated using 3-bus and 14-bus benchmark systems.
3

Accounting for the Effects of Power System Controllers and Stability on Power Dispatch and Electricity Market Prices

Kodsi, Sameh January 2005 (has links)
Recently, the widespread use of power system controllers, such as PSS and FACTS controllers, has led to the analysis of their effect on the overall stability of power systems. Many studies have been conducted to allocate FACTS controllers so that they achieve optimal power flow conditions in the context of Optimal Power Flow (OPF) analysis. However, these studies usually do not examine the effect of these controllers on the voltage and angle stability of the entire system, considering that the types of these controllers and their control signals, such as reactive power, current, or voltage, have significant effect on the entire system stability. <br /><br /> Due to the recent transition from government controlled to deregulated electricity markets, the relationship between power system controllers and electricity markets has added a new dimension, as the effect of these controllers on the overall power system stability has to be seen from an economic point of view. Studying the effect of adding and tuning these controllers on the pricing of electricity within the context of electricity markets is a significant and novel research area. Specifically, the link among stability, FACTS controllers and electricity pricing should be appropriately studied and modelled. <br /><br /> Consequently, in this thesis, the focus is on proposing and describing of a novel OPF technique which includes a new stability constraint. This technique is compared with respect to existent OPF techniques, demonstrating that it provides an appropriate modelling of system controllers, and thus a better understanding of their effects on system stability and energy pricing. The proposed OPF technique offers a new methodology for pricing the dynamic services provided by the system's controllers. Moreover, the new OPF technique can be used to develop a novel tuning methodology for PSS and FACTS controllers to optimize power dispatch and price levels, as guaranteeing an adequate level of system security. All tests and comparisons are illustrated using 3-bus and 14-bus benchmark systems.
4

Intelligent control and system aggregation techniques for improving rotor-angle stability of large-scale power systems

Molina, Diogenes 13 January 2014 (has links)
A variety of factors such as increasing electrical energy demand, slow expansion of transmission infrastructures, and electric energy market deregulation, are forcing utilities and system operators to operate power systems closer to their design limits. Operating under stressed regimes can have a detrimental effect on the rotor-angle stability of the system. This stability reduction is often reflected by the emergence or worsening of poorly damped low-frequency electromechanical oscillations. Without appropriate measures these can lead to costly blackouts. To guarantee system security, operators are sometimes forced to limit power transfers that are economically beneficial but that can result in poorly damped oscillations. Controllers that damp these oscillations can improve system reliability by preventing blackouts and provide long term economic gains by enabling more extensive utilization of the transmission infrastructure. Previous research in the use of artificial neural network-based intelligent controllers for power system damping control has shown promise when tested in small power system models. However, these controllers do not scale-up well enough to be deployed in realistically-sized power systems. The work in this dissertation focuses on improving the scalability of intelligent power system stabilizing controls so that they can significantly improve the rotor-angle stability of large-scale power systems. A framework for designing effective and robust intelligent controllers capable of scaling-up to large scale power systems is proposed. Extensive simulation results on a large-scale power system simulation model demonstrate the rotor-angle stability improvements attained by controllers designed using this framework.

Page generated in 0.137 seconds