• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs

Hein, Sabine 03 March 2010 (has links) (PDF)
The topic of this thesis is the theoretical and numerical research of optimal control problems for uncertain nonlinear systems, described by semilinear parabolic differential equations with additive noise, where the state is not completely available. Based on a paper by Kazufumi Ito and Karl Kunisch, which was published in 2006 with the title "Receding Horizon Control with Incomplete Observations", we analyze a Model Predictive Control (MPC) approach where the resulting linear problems on small intervals are solved with a Linear Quadratic Gaussian (LQG) design. Further we define a performance index for the MPC/LQG approach, find estimates for it and present bounds for the solutions of the underlying Riccati equations. Another large part of the thesis is devoted to extensive numerical studies for an 1+1- and 3+1-dimensional problem to show the robustness of the MPC/LQG strategy. The last part is a generalization of the MPC/LQG approach to infinite-dimensional problems.
2

MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs

Hein, Sabine 03 February 2010 (has links)
The topic of this thesis is the theoretical and numerical research of optimal control problems for uncertain nonlinear systems, described by semilinear parabolic differential equations with additive noise, where the state is not completely available. Based on a paper by Kazufumi Ito and Karl Kunisch, which was published in 2006 with the title "Receding Horizon Control with Incomplete Observations", we analyze a Model Predictive Control (MPC) approach where the resulting linear problems on small intervals are solved with a Linear Quadratic Gaussian (LQG) design. Further we define a performance index for the MPC/LQG approach, find estimates for it and present bounds for the solutions of the underlying Riccati equations. Another large part of the thesis is devoted to extensive numerical studies for an 1+1- and 3+1-dimensional problem to show the robustness of the MPC/LQG strategy. The last part is a generalization of the MPC/LQG approach to infinite-dimensional problems.

Page generated in 0.0659 seconds