Spelling suggestions: "subject:"préchargement"" "subject:"déchargement""
1 |
Prefetching control for on-demand contents distribution : a Markov decision process study / Contrôle du préchargement pour la distribution de contenus à la demande : une approche par les processus de décision markoviensMorad, Olivia 17 September 2014 (has links)
Le contexte de la thèse porte sur le contrôle des réseaux de distribution de contenu à la demande. La performance des systèmes distribués interactifs dépend essentiellement sur la prévision du comportement de l'utilisateur et la bande passante en tant que ressource de réseau critique. Le préchargement est une approche prédictive bien connu dans le World Wide Web ce qui évite les délais de réponse en exploitant un temps d'arrêt que permet d'anticiper les futures demandes de l'utilisateur et prend avantage des ressources réseau disponibles. Le contrôle de préchargement est une opération vitale pour les systèmes à la demande interactifs où la réponse instantanée est le facteur crucial pour la réussite du système. Le contrôleur en ce type de système interactif fonctionne dans un environnement incertain et rend séquences de décisions à court et long terme effets stochastique. La difficulté est alors de déterminer à chaque état du système les contenus préchargés dans le cache. Le plan de préchargement pendant une session en flux continu interactif peut être modélisé comme un problème de décision séquentielle par les processus de décision de Markov (MDP). Nous nous concentrons sur le problème de contrôle de préchargement, dans lequel le contrôleur cherche à atteindre l'état du système à coût zéro aussi vite que possible. Nous modélisons ce problème de contrôle comme un problème de programmation dynamique stochastique négatif dans lequel nous minimisons le coût total prévu. Dans ce contexte, nous avons abordé les questions de recherche suivantes: 1) Comment fournir un politique de préchargement optimale/ approximative optimale qui maximise l'utilisation de la bande passante tout en minimisant les coûts de blocage et de la latence de l'utilisateur engagés sur le chemin? 2) Comment exploiter la structure du modèle de contrôle de préchargement pour aider efficacement calculer la politique de contrôle de préchargement avec la réduction des efforts de calcul et la mémoire de stockage? 3) Comment mener une étude d'évaluation pour évaluer le préchargement de différents algorithmes heuristiques basée sur le contexte de l'optimisation au lieu du cadre de l'empirique / simulation. Pour l'étude de notre problème de recherche, nous avons développé notre modèle MDP de préchargement, PREF-CT, nous avons établi ses propriétés théoriques et nous avons résolu par l'algorithme Value Iteration comme algorithme MDP pour calculer la politique de préchargement optimale. Pour calcul de la politique de préchargement optimale efficace, nous avons détecté une structure spéciale qui réalise un modèle de contrôle plus compact. Cette structure spéciale permet de développer deux algorithmes différents stratégiquement qui améliorent la complexité du calcul de la politique de préchargement optimale: - la première est « ONE-PASS » le second est « TREE-DEC ». Pour surmonter le problème de la dimensionnalité résultant du calcul de la politique de préchargement optimale, nous avons proposé l'algorithme de préchargement heuristique: « Relevant Blocks Prefetching » (RBP). Pour évaluer et comparer le préchargement politiques calculés par des algorithmes de préchargement heuristiques différents, nous avons présenté un cadre fondé sur des différentes mesures de performance. Nous avons appliqué le cadre proposé sous différentes configurations de coûts et différents comportements des utilisateurs pour évaluer les politiques de préchargement calculées par notre algorithme de préchargement proposé; RBP. Par rapport aux politiques de préchargement optimales, l'analyse expérimentale a prouvé des performances significatives des politiques de préchargement de l'heuristique du RBP algorithme. En outre, l'algorithme heuristique de préchargement; RBP se distingue par une propriété de clustériser qui est important pour réduire considérablement la mémoire nécessaire pour stocker la politique de préchargement. / The thesis context is concerned with the control of theOn-demand contents distribution networks. The performance of suchinteractive distributed systems basically depends on the prediction ofthe user behavior and the bandwidth as a critical network resource.Prefetching is a well-known predictive approach in the World Wide Webwhich avoids the response delays by exploiting some downtime thatpermits to anticipate the user future requests and takes advantage ofthe available network resources. Prefetching control is a vitaloperation for the On-demand interactive systems where the instantaneousresponse is the crucial factor for the system success. The controller insuch type of interactive system operates in an uncertain environment andmakes sequences of decisions with long and short term stochasticeffects. The difficulty, then, is to determine at every system statewhich contents to prefetch into the cache. The prefetching plan duringan interactive streaming session can be modeled as a sequential decisionmaking problem by a Markov Decision Process (MDP). We focus on theprefetching control problem in which the controller seeks to reach aZero-Cost system state as quickly as possible. We model this controlproblem as a Negative Stochastic Dynamic Programming problem in which weminimize the undiscounted total expected cost. Within this context, weaddressed the following research questions: 1) How to provide anoptimal/approximate-optimal prefetching policy that, maximizes thebandwidth utilization while minimizes the user's blocking and latencycosts incurred along the way? 2) How to exploit structure in theprefetching control model to help efficiently compute such prefetchingcontrol policy with both computational efforts and storage memoryreduction? 3) How to conduct a performance evaluation study to evaluatedifferent prefetching heuristic algorithms based on the context of thecontrol optimization rather than the context of theempirical/simulation. For studying our research problem, we developedour MDP prefetching control model, PREF-CT, we established itstheoretical properties and we solved it by the Value Iteration algorithmas MDP algorithm for computing the optimal prefetching policy. Forcomputing the optimal prefetching policy efficiently, we detected aspecial structure that achieves more compact control model. This specialstructure permits to develop two strategically different algorithmswhich improve the complexities of computing the optimal prefetchingpolicy: - the first one is the ONE-PASS which is based mainly on solvinga system of linear equations simultaneously in only one iteration,whereas the second is the TREE-DEC which is based on Markov decisiontree decomposition in which sequential sets of systems of equations aresolved. For overcoming the problem of the curse of dimensionalityresulting from the computation of the optimal prefetching policy, weproposed the prefetching heuristic algorithm: the Relevant BlocksPrefetching algorithm (RBP). For evaluating and comparing prefetchingpolicies computed by different prefetching heuristic algorithms, wepresented a framework based on different performance measures. Weapplied the suggested framework under different costs configurations anddifferent user behaviors to evaluate the prefetching policies computedby our proposed prefetching heuristic algorithm; the RBP. Compared tothe optimal prefetching policies, the experimental analysis provedsignificant performance of the prefetching policies of the RBP heuristicalgorithm. In addition, the RBP prefetching heuristic algorithm isdistinguished by a clustering property which is of importance to reducesignificantly the memory necessary to store the prefetching policy tothe controller.
|
2 |
Ordonnancement pour la gestion de la mémoire et du préchargement dans les architectures multicoeurs embarquéesCarpov, Sergiu 14 October 2011 (has links) (PDF)
Cette thèse est consacrée à l'étude de plusieurs problèmes d'optimisation combinatoire qui se présentent dans le domaine du calcul parallèle embarqué. En particulier, la gestion optimale de la mémoire et des problèmes d'ordonnancement pour les applications flot de données exécutées sur des processeurs massivement multicœurs sont étudiés. Deux techniques d'optimisation d'accès à la mémoire sont considérées : la réutilisation des données et le préchargement. La gestion des accès à la mémoire est déclinée en trois problèmes d'optimisation combinatoire. Dans le premier problème, une stratégie de préchargement pour les applications flot de données est étudiée, de façon à minimiser le temps d'exécution de l'application. Ce problème est modélisé comme un flow shop hybride sous contraintes de précédence, un problème \mathcal{NP}\text{-difficile} . Un algorithme de résolution heuristique avec deux bornes inférieures sont proposés afin de faire une estimation conservatrice, quoique suffisamment précise, de la distance à l'optimum des solutions obtenues. Le deuxième problème traite de l'exécution conditionnelle dépendante des données et de la gestion optimale du préchargement pour les structures de branchement. Quelques fonctions économiques, ainsi que des techniques de préchargement, sont examinées. Dans tous ces cas des algorithmes de résolution polynomiaux sont proposés. Le troisième problème consiste à ordonner un ensemble de tâches de façon à maximiser la réutilisation des données communes. Ce problème étant \mathcal{NP}\text{-difficile} , ce que nous avons établi, nous avons proposé deux algorithmes heuristiques. La distance à l'optimum des solutions est estimée en utilisant des solutions exactes. Ces dernières sont obtenues à l'aide d'une méthode branch-and-bound que nous avons proposée.
|
3 |
Caching and prefetching for efficient video services in mobile networks / Caching et prefetching pour une livraison plus efficace des contenus vidéo dans les réseaux mobilesGouta, Ali 15 January 2015 (has links)
Les réseaux cellulaires ont connu une croissance phénoménale du trafic alimentée par les nouvelles technologies d'accès cellulaire. Cette croissance est en grande partie tirée par l'émergence du trafic HTTP adaptatif streaming (HAS) comme une nouvelle technologie de diffusion des contenus vidéo. Le principe du HAS est de rendre disponible plusieurs qualités de la même vidéo en ligne et que les clients choisissent la meilleure qualité qui correspond à leur bande passante. Chaque niveau d'encodage est segmenté en des chunks, qui dont la durée varie de 2 à 10 secondes. L'émergence du HAS a introduit des nouvelles contraintes sur les systèmes de livraison des contenus vidéo en particulier sur les systèmes de caches. Dans ce contexte, nous menons une analyse détaillée des données du trafic HAS collecté en France et fournie par le plus grand opérateur de téléphonie mobile du pays. Tout d'abord, nous analysons et modélisons le comportement des clients qui demandent des contenus VoD et live. Ces analyses nous ont permis d'identifier les facteurs qui impactent la performance des systèmes de cache et de proposer un nouveau algorithme de remplacement de contenus qu'on appelle WA-LRU. WA-LRU exploite la localité temporelle des chunks dans le contenu et la connaissance de la charge du trafic dans le réseau afin d'améliorer la performance du cache. Ensuite, nous analysons et modélisons la logique d'adaptation entre les qualités vidéo basés sur des observations empiriques. Nous montrons que le changement fréquent entre les encodages réduit considérablement la performance des systèmes de cache. Dans ce contexte, nous présentons CF-DASH une implémentation libre d'un player DASH qui vise à réduire les changements fréquents entre qualités, assure une bonne QoE des clients et améliore la performance des systèmes de caches. La deuxième partie de la thèse est dédié à la conception, simulation et implémentation d'une solution de préchargement des contenus vidéo sur terminaux mobiles. Nous concevons un système que nous appelons «Central Predictor System (CPsys)" qui prédit le comportement des clients mobiles et leurs consommations des vidéos. Nous évaluons CPSys avec des traces de trafic réel. Enfin, nous développons une preuve de concept de notre solution de préchargement. / Recently, cellular networks have witnessed a phenomenal growth of traffic fueled by new high speed broadband cellular access technologies. This growth is in large part driven by the emergence of the HTTP Adaptive Streaming (HAS) as a new video delivery method. In HAS, several qualities of the same videos are made available in the network so that clients can choose the quality that best fits their bandwidth capacity. This strongly impacts the viewing pattern of the clients, their switching behavior between video qualities, and thus beyond on content delivery systems. In this context, we provide an analysis of a real HAS dataset collected in France and provided by the largest French mobile operator. Firstly, we analyze and model the viewing patterns of VoD and live streaming HAS sessions and we propose a new cache replacement strategy, named WA-LRU. WA-LRU leverages the time locality of video segments within the HAS content. We show that WA-LRU improves the performance of the cache. Second, we analyze and model the adaptation logic between the video qualities based on empirical observations. We show that high switching behaviors lead to sub optimal caching performance, since several versions of the same content compete to be cached. In this context we investigate the benefits of a Cache Friendly HAS system (CF-DASH) which aims at improving the caching efficiency in mobile networks and to sustain the quality of experience of mobile clients. Third, we investigate the mobile video prefetching opportunities. We show that CPSys can achieve high performance as regards prediction correctness and network utilization efficiency. We further show that CPSys outperforms other prefetching schemes from the state of the art. At the end, we provide a proof-of-concept implementation of our prefetching system.
|
Page generated in 0.0719 seconds