• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse et caractérisation structurale de composés oxalate à base d’actinides / Synthesis and structural characterization of actinide oxalate compounds

Tamain, Christelle 15 December 2011 (has links)
L’acide oxalique est un ligand mis en avant pour la récupération quantitative des actinides séparés des produits de fission. En particulier, la co-précipitation oxalique facilite l’incorporation des actinides mineurs dans des matériaux céramique dédiés à leur transmutation grâce à la formation contrôlée de composés oxalate mixtes, précurseurs des solutions solides oxyde souhaitées. Les méthodes de croissance cristalline existantes n’étant pas adaptables à la chimie du système actinide-oxalate et aux conditions de manipulation en boîte-à-gants, plusieurs méthodes de synthèse originales ont été conçues puis développées sur les lanthanides et les actinides légers (uranium, thorium). Quatre méthodes originales, basées sur des stratégies de mise en contact lente des réactifs, ont ainsi été optimisées. Après développement sur les simulants, elles ont été adaptées aux spécificités (notamment redox) des actinides plus lourds tels le plutonium ou l’américium. Elles ont permis la synthèse de nombreux monocristaux d’oxalates d’actinide et d’oxalates mixtes An1(IV)-An2(III) mais aussi An1(IV)-An2(IV). Finalement, les premières caractérisations structurales poussées de ces composés par DRX sur monocristal, EXAFS ou micro-RAMAN permettent d’acquérir des informations structurales indispensables à l’enrichissement de la base de données structurales relativement pauvre concernant les oxalates d’actinides. Cette dernière est pourtant indispensable à une meilleure compréhension des futurs cycles du combustible actuellement à l’étude. / Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles.
2

Etude des mécanismes de compensation de charge dans les solutions solides d’oxalates d’actinides / Study of charge compensation mechanisms of actinides oxalates solid solutions

Gil Martin, Ana 21 October 2013 (has links)
Dans le cadre du développement des cycles nucléaires du futur, les recherches menées sur le recyclage des combustibles usés sont orientées vers des procédés de synthèse de solides mixtes d’actinides pouvant être utilisés comme matières premières pour la fabrication de nouveaux combustibles ou cibles de transmutation. La co-conversion oxalique figure parmi les voies de synthèse d’oxydes mixtes les plus étudiées. Les oxalates mixtes, composés d’actinides IV et III, sont tout d’abord produits avec de hauts rendements de précipitation compte tenu de leur grande insolubilité. Leur structure cristallographique est bâtie à partir d’un réseau anionique, 2D ou 3D, dans lequel s’insèrent des cations monochargés M+ pour assurer l’électroneutralité du composé. Ce travail vise la compréhension des mécanismes de compensation de charge par les monocations M+, qui rentrent en jeu lors de la co-précipitation oxalique. L’étude a été menée d’abord sur un système modèle à base ThIV et NdIII exempt de toute interaction redox puis sur un système plus complexe purement à base d’actinides, An1IV et An2III. Des techniques de caractérisation du solide par diffraction de RX, spectroscopie infrarouge et UV du solide, thermogravimétrie, MEB, granulométrie laser, ICP-AES, analyse CHN et dosages divers, ont été utilisés comme outil indispensable pour la compréhension des mécanismes de compensation de charge. / Researches on future options for new nuclear cycles are oriented towards the synthesis of mixed actinide solids, which can be employed as precursors for the fabrication of new fuel or transmutation targets. Oxalic co-conversion is one of the most studied options for the synthesis of mixed oxides. Co-precipitated solids are commonly actinides III and IV compounds, because of their high yields of precipitation. They are able to develop 2D or 3D metal-oxalate frameworks, wherein single-charged cations are inserted to ensure the electroneutrality of the compound. The aim of this work is to better understand the charge compensation mechamisms during the oxalic co-precipitation of these mixed oxalates. The study has been first carried out on a model system, ThIV et NdIII, free of redox interactions, then applied to purely based actinides, An1IV and An2III, systems. Characterization techniques as powder X-ray diffraction, infrared spectroscopy, UV-Vis spectroscopy, thermogravimetry, SEM, Laser granulometry, ICP-AES, CHN analysis… have been used as an indispensable tool for understanding charge compensation mechanisms.

Page generated in 0.1048 seconds