Spelling suggestions: "subject:"prévision dde charge"" "subject:"prévision dee charge""
1 |
Développement de modèles de bâtiment pour la prévision de charge de climatisation et l'élaboration de stratégies d'optimisation énergétique et d'effacementBerthou, Thomas 16 December 2013 (has links) (PDF)
Pour atteindre les objectifs de réduction de consommation et augmenter la flexibilité de la demande des bâtiments, il est nécessaire de disposer de modèles de prévision de charge de climatisation facilement diffusables sur site et performants qui permettent la mise en place de stratégies d'optimisation énergétique et d'effacement. Cette thèse compare plusieurs architectures de modèles inverses (" boite noire ", " boite grise "). Un modèle semi-physique d'ordre 2 (R6C2) a été retenu pour prévoir la puissance de climatisation et la température intérieure moyenne en chauffage et en refroidissement. Il permet aussi d'interpréter des situations inédites (effacement), absentes de la phase d'apprentissage. Trois stratégies d'optimisation énergétique et d'effacement adaptées aux contraintes d'exploitation sont étudiées. La première permet d'optimiser la relance en chauffage afin de réduire la consommation et d'atteindre effectivement la température de confort le matin. La seconde stratégie optimise les températures de consigne sur une journée dans un contexte de prix variable de l'énergie, ceci afin de réduire la facture énergétique. Enfin, la troisième stratégie permet au bâtiment de s'effacer en limitant la charge tout en respectant des critères de confort spécifiés. Le modèle R6C2 et les stratégies ont été confrontés à un bâtiment réel (une école élémentaire). L'étude montre qu'il est possible de prévoir la puissance électrique et la température moyenne d'un bâtiment complexe avec un modèle mono-zone ; elle permet d'évaluer les stratégies développées et d'identifier les limites du modèle.
|
2 |
Développement de modèles de bâtiment pour la prévision de charge de climatisation et l’élaboration de stratégies d’optimisation énergétique et d’effacement / Development of building models for load curve forecast and design of energy optimization and load shedding strategiesBerthou, Thomas 16 December 2013 (has links)
Pour atteindre les objectifs de réduction de consommation et augmenter la flexibilité de la demande des bâtiments, il est nécessaire de disposer de modèles de prévision de charge de climatisation facilement diffusables sur site et performants qui permettent la mise en place de stratégies d’optimisation énergétique et d’effacement. Cette thèse compare plusieurs architectures de modèles inverses (« boite noire », « boite grise »). Un modèle semi-physique d’ordre 2 (R6C2) a été retenu pour prévoir la puissance de climatisation et la température intérieure moyenne en chauffage et en refroidissement. Il permet aussi d’interpréter des situations inédites (effacement), absentes de la phase d’apprentissage. Trois stratégies d’optimisation énergétique et d’effacement adaptées aux contraintes d’exploitation sont étudiées. La première permet d’optimiser la relance en chauffage afin de réduire la consommation et d’atteindre effectivement la température de confort le matin. La seconde stratégie optimise les températures de consigne sur une journée dans un contexte de prix variable de l’énergie, ceci afin de réduire la facture énergétique. Enfin, la troisième stratégie permet au bâtiment de s’effacer en limitant la charge tout en respectant des critères de confort spécifiés. Le modèle R6C2 et les stratégies ont été confrontés à un bâtiment réel (une école élémentaire). L’étude montre qu’il est possible de prévoir la puissance électrique et la température moyenne d’un bâtiment complexe avec un modèle mono-zone ; elle permet d’évaluer les stratégies développées et d’identifier les limites du modèle. / To reach the objectives of reducing the energy consumption and increasing the flexibility of buildings energy demand, it is necessary to have load forecast models easy to adapt on site and efficient for the implementation of energy optimization and load shedding strategies. This thesis compares several inverse model architectures ("black box", "grey box"). A 2nd order semi-physical model (R6C2) has been selected to forecast load curves and the average indoor temperature for heating and cooling. It is also able to simulate unknown situations (load shedding), absent from the learning phase. Three energy optimization and load shedding strategies adapted to operational constraints are studied. The first one optimizes the night set-back to reduce consumption and to reach the comfort temperature in the morning. The second strategy optimizes the set-point temperatures during a day in the context of variable energy prices, thus reducing the energy bill. The third strategy allows load curtailment in buildings by limiting load while meeting specified comfort criteria. The R6C2 model and strategies have been faced with a real building (elementary school). The study shows that it is possible to forecast the electrical power and the average temperature of a complex building with a single-zone model; the developed strategies are assessed and the limitations of the model are identified.
|
3 |
Determination of end user power load profiles by parallel evolutionary computing / Détermination de profils de consommation électrique par évolution artificielle parallèleKrüger, Frédéric 17 February 2014 (has links)
Il est primordial, pour un distributeur d’énergie électrique, d’obtenir des estimations précises de la demande en énergie de leurs réseaux. Des outils statistiques tels que des profils de consommation électrique offrent des estimations de qualité acceptable. Ces profils ne sont cependant généralement pas assez précis, car ils ne tiennent pas compte de l’influence de facteurs tels que la présence de chauffage électrique ou le type d’habitation. Il est néanmoins possible d’obtenir des profils précis en utilisant uniquement les historiques de consommations d’énergie des clients, les mesures desdéparts 20kV, et un algorithme génétique de séparation de sources. Un filtrage et un prétraitement des données a permis de proposer à l’algorithme génétique de séparation de sources des données adaptées. La séparation de sources particulièrement bruitées est résolue par un algorithme génétique complètement parallélisé sur une carte GPGPU. Les profils de consommation électrique obtenus correspondent aux attentes initiales, et démontrent une amélioration considérable de la précision des estimations de courbes de charge de départs 20kV et de postes de transformation moyenne tension-basse tension. / Precise estimations of the energy demand of a power network are paramount for electrical distribution companies. Statistical tools such as load profiles offer acceptable estimations. These load profiles are, however, usually not precise enough for network engineering at the local level, as they do not take into account factors such as the presence of electrical heating devices or the type of housing. It is however possible to obtain accurate load profiles with no more than end user energy consumption histories, 20kV feeder load measurements, a blind source separation and a genetic algorithm. Filtering and preliminary treatments performed on the data allowed the blind source separation to work with adequate information. The blind source separation presented in this document is successfully solved by a completely parallel genetic algorithm running on a GPGPU card. The power load profiles obtained match the requirements, and demonstrate a considerable improvement in the forecast of 20kV feeder as well as MV substation load curves.
|
Page generated in 0.1231 seconds