• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 23
  • 13
  • 12
  • 12
  • 12
  • 11
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Gamma prime precipitation modeling and strength responses in powder metallurgy superalloys

Mao, Jian, January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xvi, 140 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 137-140).
12

PRECIPITATION-HARDENING CHARACTERISTICS OF TERNARY COBALT - ALUMINUM - X ALLOYS

Lee, Charles Samuel, 1933- January 1971 (has links)
No description available.
13

Characterization and mechanical properties of nanoscale precipitates in modified Al-Si-Cu alloys using transmission electron microscopy and 3D atom probe tomography

Hwang, Junyeon. Kaufman, M. J., January 2007 (has links)
Thesis (Ph. D.)--University of North Texas, May, 2007. / Title from title page display. Includes bibliographical references.
14

Characterization and modeling of dislocation-precipitation interactions in aluminum al[l]oys

Shahbazian Yassar, Reza, January 2005 (has links) (PDF)
Thesis (Ph.D.)--Washington State University, December 2005. / Includes bibliographical references.
15

Structure and precipitate morphology relationships in a 68Cr-32Ni binary system

Ross, T. 21 April 2010 (has links)
Causes for the differences in precipitation morphology observed and investigation. / Master of Science
16

Microstructure and mechanical properties of HSLA-100 steel

Mattes, Victor R. January 1990 (has links) (PDF)
Thesis (M.S. in Mechanical Engineering and Mechanical Engineer)--Naval Postgraduate School, December 1990. / Thesis Advisor(s): Fox, Alan G. "December 1990." Description based on title screen as viewed on April 2. 2010. DTIC Identifier(s): Steel, Microstructure, Mechanical Properties, Copper, Quenching, Tempering, Processing, Naval Vessels, HSLA-100 Steel, Theses, Age Hardening, Modulus of Elasticity, Charpy V Notch Tests. Author(s) subject terms: HSLA-100, Mechanical Properties, Copper Precipitation, Carbide. Includes bibliographical references (p. 66-68). Also available in print.
17

Vliv teplotního režimu vytvrzování slitin typu Al-Si na mechanické vlastnosti / Influence of thermal treatment regime of Al-Si alloys on mechanical properties

Letovanec, Juraj January 2018 (has links)
The aim of this thesis is influence of precipitation hardening regime, specifically quench rate, on mechanical properties of aluminium alloy A356 (AlSi7Mg0.3). Samples were after solution treatment quenched into water with different temperatures and age hardened. Tensile strength tests, hardness tests and microstructure observations were done after heat tretment.
18

Developing Precipitation Hardenable High Entropy Alloys

Gwalani, Bharat 08 1900 (has links)
High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al1.5CrCuFeNi2 over a length of ~25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, and both compositions were subsequently thermo-mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (γ′) and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale γ′ precipitates. Furthermore, precipitation of bcc based ordered phase B2 in Al0.3CoCrFeNi can further strengthen the alloy. Fine-tuning the microstructure by thermo-mechanical treatments achieved a wide range of mechanical properties in the same alloy. The Al0.3CoCrFeNi HEA exhibited ultimate tensile strength (UTS) of ~250 MPa and ductility of ~65%; a UTS of ~1100 MPa and ductility of ~30%; and a UTS of 1850 MPa and a ductility of 5% after various thermo-mechanical treatments. Grain sizes, precipitates type and size scales manipulated in the alloy result in different strength ductility combinations. Henceforth, the alloy presents a fertile ground for development by grain boundary strengthening and precipitation strengthening, and offers very high activation energy of grain growth aptly suitable for high-temperature applications.
19

Alloying Aluminum with Transition Metals

Fan, Yangyang 04 May 2015 (has links)
A castable alloy, i.e., one that flows easily to fill the entire mold cavity and also has resistance to hot tearing during solidification, must invariably contain a sufficient amount of a eutectic structure. For this reason, most traditional aluminum casting alloys contain silicon because the aluminum-silicon eutectic imparts to the alloy excellent casting characteristics. However, the solidus temperature in the Al-Si system does not exceed 577°C, and the major alloying elements (i.e., zinc, magnesium, and copper) used with silicon in these alloys further lower the solidus temperature. Also, these elements have high diffusivity in aluminum and so, while they enhance the room temperature strength of the alloy, they are not useful at elevated temperatures. Considering nickel-base super alloys, whose mechanical properties are retained up to temperatures that approach 75% of their melting point, it is conceivable that castable aluminum alloys can be developed on the same basis so that they are useful at temperatures approaching 350C. A castable aluminum alloy intended for high temperature applications must contain a eutectic structure that is stable at temperatures higher than 600°C, and must contain second phase precipitate particles that are thermodynamically stable at the service temperature. Transition metal trialuminides with the general chemical formula AlxTMy in which TM is a transition metal, are excellent candidates for both the eutectic structure and the precipitate particles. In this research, the use of transition metals in the constitution of aluminum casting alloys is investigated with emphasis on the morphology, crystallography, and mechanisms of formation of the various phases.
20

Precipitation Strengthening of Aluminum by Transition Metal Aluminides

Fan, Yangyang 28 April 2015 (has links)
A castable alloy, i.e., one that flows easily to fill the entire mold cavity and also has resistance to hot tearing during solidification, must invariably contain a sufficient amount of a eutectic structure. For this reason, most traditional aluminum casting alloys contain silicon because the aluminum-silicon eutectic imparts to the alloy excellent casting characteristics. However, the solidus temperature in the Al-Si system does not exceed 577°C, and the major alloying elements (i.e., zinc, magnesium, and copper) used with silicon in these alloys further lower the solidus temperature. Also, these elements have high diffusivity in aluminum and so, while they enhance the room temperature strength of the alloy, they are not useful at elevated temperatures. Considering nickel-base super alloys, whose mechanical properties are retained up to temperatures that approach 75% of their melting point, it is conceivable that castable aluminum alloys can be developed on the same basis so that they are useful at temperatures approaching 350 °C. A castable aluminum alloy intended for high temperature applications must contain a eutectic structure that is stable at temperatures higher than 600°C, and must contain second phase precipitate particles that are thermodynamically stable at the service temperature. Transition metal trialuminides with the general chemical formula AlxTMy in which TM is a transition metal, are excellent candidates for both the eutectic structure and the precipitate particles. In this research, the use of transition metals in the constitution of aluminum casting alloys is investigated with emphasis on the morphology, crystallography, and mechanisms of formation of the various phases.

Page generated in 0.1104 seconds