Spelling suggestions: "subject:"precomputed radiance btransfer"" "subject:"precomputed radiance cotransfer""
1 |
Naturlig ljussättning i terrängsrenderingsalgoritmer med level-of-detailEngkvist, Henrik January 2005 (has links)
<p>Denna rapport presenterar ett alternativt sätt att ljussätta terräng i datorgrafik. Tidigare modeller har vanligtvis byggt på lokal ljussättning, som inte tar hänsyn till kringliggande geometri, och har med en extra process approximerat effekten av ljusinteraktionen. Genom att använda sig av en teknik som kallas precomputed radiance transfer (PRT) kan man förberäkna hur en punkt interagerar med ljus för olika inkommande riktningar och undviker därmed att göra detta under programkörningen. Det är viktigt att denna teknik även fungerar tillsammans med level-of-detail (LOD) terrängrenderingsalgoritmer eftersom rendering av alla trianglar i terrängen för varje skärmuppdatering inte är optimalt för dagens grafikkort. Man vill därför representera den underliggande terrängen med fler trianglar närmare betraktaren och färre längre bort. Motiveringen till detta är att trianglar längre ifrån betraktaren kommer resultera i färre pixlar på skärmen, så att rendera större trianglar gör en liten visuell skillnad. Arbetet visar på att tekniken fungerar med LOD-terrängrenderingsalgoritmer med bra prestanda och visuell kvalitet.</p>
|
2 |
Naturlig ljussättning i terrängsrenderingsalgoritmer med level-of-detailEngkvist, Fredrik January 2005 (has links)
Denna rapport presenterar ett alternativt sätt att ljussätta terräng i datorgrafik. Tidigare modeller har vanligtvis byggt på lokal ljussättning, som inte tar hänsyn till kringliggande geometri, och har med en extra process approximerat effekten av ljusinteraktionen. Genom att använda sig av en teknik som kallas precomputed radiance transfer (PRT) kan man förberäkna hur en punkt interagerar med ljus för olika inkommande riktningar och undviker därmed att göra detta under programkörningen. Det är viktigt att denna teknik även fungerar tillsammans med level-of-detail (LOD) terrängrenderingsalgoritmer eftersom rendering av alla trianglar i terrängen för varje skärmuppdatering inte är optimalt för dagens grafikkort. Man vill därför representera den underliggande terrängen med fler trianglar närmare betraktaren och färre längre bort. Motiveringen till detta är att trianglar längre ifrån betraktaren kommer resultera i färre pixlar på skärmen, så att rendera större trianglar gör en liten visuell skillnad. Arbetet visar på att tekniken fungerar med LOD-terrängrenderingsalgoritmer med bra prestanda och visuell kvalitet.
|
3 |
Textured Hierarchical Precomputed Radiance TransferMcKenzie Chapter, Harrison Lee 01 June 2010 (has links)
Computing complex lighting simulations such as global illumination is a computationally intensive task. Various real time solutions exist to approximate aspects of global illumination such as shadows, however, few of these methods offer single pass rendering solutions for soft shadows (self and other) and inter-reflections. In contrast, Precomputed Radiance Transfer (PRT) is a real-time computer graphics technique which pre-calculates an object's response to potential incident light. At run time, the actual incident light can be used to quickly illuminate the surface, rendering effects such as soft self-shadows and inter-reflections. In this thesis, we show that by calculating PRT lighting coefficients densely over a surface as texture data, additional surface detail can be encoded by integrating other computer graphics techniques, such as normal mapping. By calculating transfer coefficients densely over the surface of a mesh as texture data, greater fidelity can be achieved in lighting coarse meshes than simple interpolation can achieve. Furthermore, the lighting on low polygon objects can be enhanced by drawing surface normal and occlusion data from highly tessellated, detailed meshes. By applying such data to a decimated, simplified mesh, a more detailed and visually pleasing reconstruction can be displayed for a lower cost. In addition, this thesis introduces Hierarchical PRT, which extends some surface effects, such as soft shadows, between objects. Previous approaches to PRT used a more complex neighborhood transfer scheme in order to extend these lighting effects. Hierarchical PRT attempts to capture scene information in a tree data structure which represents coarse lighting relationships between objects. Potential occlusions can be found at run time by utilizing the same spherical harmonic representation used to represent surface lighting to instead store light "filters" between scene tree nodes. Such "filters" can be combined over a set of nodes in the scene to obtain the net shadowing of an object with good performance.
We present both visually pleasing results on simplified meshes using normal mapping and textured PRT and initial results using Hierarchical PRT that captures low frequency lighting information for a small number of dynamic objects which shadow static scene objects with good results.
|
4 |
Logarithme d'harmoniques sphériques pour le rendu d'ombres douces de champs de hauteurs et de maillagesGiraud, Aude 04 1900 (has links)
Les ombres sont un élément important pour la compréhension d'une scène. Grâce à elles, il est possible de résoudre des situations autrement ambigües, notamment concernant les mouvements, ou encore les positions relatives des objets de la scène. Il y a principalement deux types d'ombres: des ombres dures, aux limites très nettes, qui résultent souvent de lumières ponctuelles ou directionnelles; et des ombres douces, plus floues, qui contribuent à l'atmosphère et à la qualité visuelle de la scène. Les ombres douces résultent de grandes sources de lumière, comme des cartes environnementales, et sont difficiles à échantillonner efficacement en temps réel. Lorsque l'interactivité est prioritaire sur la qualité, des méthodes d'approximation peuvent être utilisées pour améliorer le rendu d'une scène à moindre coût en temps de calcul.
Nous calculons interactivement les ombres douces résultant de sources de lumière environnementales, pour des scènes composées d'objets en mouvement et d'un champ de hauteurs dynamique. Notre méthode enrichit la méthode d'exponentiation des harmoniques sphériques, jusque là limitée aux bloqueurs sphériques, pour pouvoir traiter des champs de hauteurs. Nous ajoutons également une représentation pour les BRDFs diffuses et glossy. Nous pouvons ainsi combiner les visibilités et BRDFs dans un même espace, afin de calculer efficacement les ombres douces et les réflexions de scènes complexes. Un algorithme hybride, qui associe les visibilités en espace écran et en espace objet, permet de découpler la complexité des ombres de la complexité de la scène. / Shadows provide important visual cues to a viewer about the relative positions of objects in a scene, as well as certain properties of the lighting in an environment, such as orientation, size, and intensity. The importance of shadows in visual simulations is even more striking when any element of an environment, such as characters in a scene or the light sources themselves, are animated over time.
The simulation of so-called "hard" shadows from small point or directional light sources is a very mature field in computer graphics, with many concrete and well-established solutions. On the other hand, efficiently approximating the shadowing effects from larger "area" light sources, such as ceiling lights or environment maps captured from the real world, remains an open problem. Indeed, in many applications, the availability of a high-performance solution to this problem trumps the need for an accurate solution.
Our work aims to solve the problem of approximating soft shadows interactively, in scenes where the geometric elements and lighting are both allowed to be animated over time. We decompose dynamic scene elements into deformable objects, approximated with a collection of non-deformable animated spheres, and height field geometry. By leveraging a novel spherical harmonic basis-space exponentiation formulation, we are able to very quickly accumulate the shadowing effects from these many dynamic blockers, while also encoding their local reflectance behaviour in a similar reduced basis representation.
Our proof-of-concept implementation uses a hybrid, multi-resolution image- and object-space visibility marching algorithm that decouples geometric complexity from radiometric complexity. We demonstrate our method on several scenes with dynamic blockers and complex illumination.
|
Page generated in 0.0854 seconds