Spelling suggestions: "subject:"aprediction software anomalies"" "subject:"iprediction software anomalies""
1 |
Proactive software rejuvenation solution for web enviroments on virtualized platformsAlonso López, Javier 21 February 2011 (has links)
The availability of the Information Technologies for everything, from everywhere, at all times is a growing requirement. We use information Technologies from common and social tasks to critical tasks like managing nuclear power plants or even the International Space Station (ISS). However, the availability of IT infrastructures is still a huge challenge nowadays. In a quick look around news, we can find reports of corporate outage, affecting millions of users and impacting on the revenue and image of the companies.
It is well known that, currently, computer system outages are more often due to software faults, than hardware faults. Several studies have reported that one of the causes of unplanned software outages is the software aging phenomenon. This term refers to the accumulation of errors, usually causing resource contention, during long running application executions, like web applications, which normally cause applications/systems to hang or crash. Gradual performance degradation could also accompany software aging phenomena. The software aging phenomena are often related to memory bloating/ leaks, unterminated threads, data corruption, unreleased file-locks or overruns. We can find several examples of software aging in the industry.
The work presented in this thesis aims to offer a proactive and predictive software rejuvenation solution for Internet Services against software aging caused by resource exhaustion. To this end, we first present a threshold based proactive rejuvenation to avoid the consequences of software aging. This first approach has some limitations, but the most important of them it is the need to know a priori the resource or resources involved in the crash and the critical condition values. Moreover, we need some expertise to fix the threshold value to trigger the rejuvenation action. Due to these limitations, we have evaluated the use of Machine Learning to overcome the weaknesses of our first approach to obtain a proactive and predictive solution.
Finally, the current and increasing tendency to use virtualization technologies to improve the resource utilization has made traditional data centers turn into virtualized data centers or platforms. We have used a Mathematical Programming approach to virtual machine allocation and migration to optimize the resources, accepting as many services as possible on the platform while at the same time, guaranteeing the availability (via our software rejuvenation proposal) of the services deployed against the software aging phenomena.
The thesis is supported by an exhaustive experimental evaluation that proves the effectiveness and feasibility of our proposals for current systems.
|
Page generated in 0.1265 seconds