• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 366
  • 140
  • 54
  • 33
  • 7
  • 6
  • 5
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 743
  • 743
  • 517
  • 176
  • 144
  • 141
  • 139
  • 118
  • 91
  • 87
  • 82
  • 75
  • 73
  • 71
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Model predictive control (MPC) algorithm for tip-jet reaction drive systems

Kestner, Brian 16 November 2009 (has links)
Modern technologies coupled with advanced research have allowed model predictive control (MPC) to be applied to new and often experimental systems. The purpose of this research is to develop a model predictive control algorithm for tip-jet reaction drive system. This system's faster dynamics require an extremely short sampling rate, on the order of 20ms, and its slower dynamics require a longer prediction horizon. This coupled with the fact that the tip-jet reaction drive system has multiple control inputs makes the integration of an online MPC algorithm challenging. In order to apply a model predictive control to the system in question, an algorithm is proposed that combines multiplexed inputs and a feasible cooperative MPC algorithm. In the proposed algorithm, it is hypothesized that the computational burden will be reduced from approximately Hp(Nu + Nx)3 to pHp(Nx+1)3 while maintaining control performance similar to that of a centralized MPC algorithm. To capture the performance capability of the proposed controller, a comparison its performance to that of a multivariable proportional-integral (PI) controller and a centralized MPC is executed. The sensitivity of the proposed MPC to various design variables is also explored. In terms of bandwidth, interactions, and disturbance rejection, the proposed MPC was very similar to that of a centralized MPC or PI controller. Additionally in regards to sensitivity to modeling error, there is not a noticeable difference between the two MPC controllers. Although the constraints are handled adequately for the proposed controller, adjustments can be made in the design and sizing process to improve the constraint handling, so that it is more comparable to that of the centralized MPC. Given these observations, the hypothesis of the dissertation has been confirmed. The proposed MPC does in fact reduce computational burden while maintaining close to centralized MPC performance.
12

Robust Model Predictive Control and Distributed Model Predictive Control: Feasibility and Stability

Liu, Xiaotao 03 December 2014 (has links)
An increasing number of applications ranging from multi-vehicle systems, large-scale process control systems, transportation systems to smart grids call for the development of cooperative control theory. Meanwhile, when designing the cooperative controller, the state and control constraints, ubiquitously existing in the physical system, have to be respected. Model predictive control (MPC) is one of a few techniques that can explicitly and systematically handle the state and control constraints. This dissertation studies the robust MPC and distributed MPC strategies, respectively. Specifically, the problems we investigate are: the robust MPC for linear or nonlinear systems, distributed MPC for constrained decoupled systems and distributed MPC for constrained nonlinear systems with coupled system dynamics. In the robust MPC controller design, three sub-problems are considered. Firstly, a computationally efficient multi-stage suboptimal MPC strategy is designed by exploiting the j-step admissible sets, where the j-step admissible set is the set of system states that can be steered to the maximum positively invariant set in j control steps. Secondly, for nonlinear systems with control constraints and external disturbances, a novel robust constrained MPC strategy is designed, where the cost function is in a non-squared form. Sufficient conditions for the recursive feasibility and robust stability are established, respectively. Finally, by exploiting the contracting dynamics of a certain type of nonlinear systems, a less conservative robust constrained MPC method is designed. Compared to robust MPC strategies based on Lipschitz continuity, the strategy employed has the following advantages: 1) it can tolerate larger disturbances; and 2) it is feasible for a larger prediction horizon and enlarges the feasible region accordingly. For the distributed MPC of constrained continuous-time nonlinear decoupled systems, the cooperation among each subsystems is realized by incorporating a coupling term in the cost function. To handle the effect of the disturbances, a robust control strategy is designed based on the two-layer invariant set. Provided that the initial state is feasible and the disturbance is bounded by a certain level, the recursive feasibility of the optimization is guaranteed by appropriately tuning the design parameters. Sufficient conditions are given ensuring that the states of each subsystem converge to the robust positively invariant set. Furthermore, a conceptually less conservative algorithm is proposed by exploiting the controllability set instead of the positively invariant set, which allows the adoption of a shorter prediction horizon and tolerates a larger disturbance level. For the distributed MPC of a large-scale system that consists of several dynamically coupled nonlinear systems with decoupled control constraints and disturbances, the dynamic couplings and the disturbances are accommodated through imposing new robustness constraints in the local optimizations. Relationships among, and design procedures for the parameters involved in the proposed distributed MPC are derived to guarantee the recursive feasibility and the robust stability of the overall system. It is shown that, for a given bound on the disturbances, the recursive feasibility is guaranteed if the sampling interval is properly chosen. / Graduate / 0548 / 0544 / 0546 / liuxiaotao1982@gmail.com
13

Multivariable constrained Model Predictive Control

Heise, Sharon Ann January 1994 (has links)
No description available.
14

Model predictive control design for load frequency control problem

Atić, Nedz̆ad. January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains vii, 68 p. : ill. Includes abstract. Includes bibliographical references (p. 66-68).
15

Model predictive control (MPC) algorithm for tip-jet reaction drive systems

Kestner, Brian. January 2009 (has links)
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Mavris, Dimitri; Committee Member: German, Brian; Committee Member: Healy, Tim; Committee Member: Rosson, Randy; Committee Member: Tai, Jimmy. Part of the SMARTech Electronic Thesis and Dissertation Collection.
16

Autonomous Overtaking with Learning Model Predictive Control / Autonom Omkörning med Learning Model Predictive Control

Bengtsson, Ivar January 2020 (has links)
We review recent research into trajectory planning for autonomous overtaking to understand existing challenges. Then, the recently developed framework Learning Model Predictive Control (LMPC) is presented as a suitable method to iteratively improve an overtaking manoeuvre each time it is performed. We present recent extensions to the LMPC framework to make it applicable to overtaking. Furthermore, we also present two alternative modelling approaches with the intention of reducing computational complexity of the optimization problems solved by the controller. All proposed frameworks are built from scratch in Python3 and simulated for evaluation purposes. Optimization problems are modelled and solved using the Gurobi 9.0 Python API gurobipy. The results show that LMPC can be successfully applied to the overtaking problem, with improved performance at each iteration. However, the first proposed alternative modelling approach does not improve computational times as was the intention. The second one does but fails in other areas. / Vi går igenom ny forskning inom trajectory planning för autonom omkörning för att förstå de utmaningar som finns. Därefter föreslås ramverket Learning Model Predictive Control (LMPC) som en lämplig metod för att iterativt förbättra en omkörning vid varje utförande. Vi tar upp utvidgningar av LMPC-ramverket för att göra det applicerbart på omkörningsproblem. Dessutom presenterar vi också två alternativa modelleringar i syfte att minska optimeringsproblemens komplexitet. Alla tre angreppssätt har byggts från grunden i Python3 och simulerats i utvärderingssyfte. Optimeringsproblem har modellerats och lösts med programvaran Gurobi 9.0s python-API gurobipy. Resultaten visar att LMPC kan tillämpas framgångsrikt på omkörningsproblem, med förbättrat utförande vid varje iteration. Den första alternativa modelleringen minskar inte beräkningstiden vilket var dess syfte. Det gör däremot den andra alternativa modelleringen som dock fungerar sämre i andra avseenden.​
17

Autonomous learning of domain models from probability distribution clusters

Słowiński, Witold January 2014 (has links)
Nontrivial domains can be difficult to understand and the task of encoding a model of such a domain can be difficult for a human expert, which is one of the fundamental problems of knowledge acquisition. Model learning provides a way to address this problem by allowing a predictive model of the domain's dynamics to be learnt algorithmically, without human supervision. Such models can provide insight about the domain to a human or aid in automated planning or reinforcement learning. This dissertation addresses the problem of how to learn a model of a continuous, dynamic domain, from sensory observations, through the discretisation of its continuous state space. The learning process is unsupervised in that there are no predefined goals, and it assumes no prior knowledge of the environment. Its outcome is a model consisting of a set of predictive cause-and-effect rules which describe changes in related variables over brief periods of time. We present a novel method for learning such a model, which is centred around the idea of discretising the state space by identifying clusters of uniform density in the probability density function of variables, which correspond to meaningful features of the state space. We show that using this method it is possible to learn models exhibiting predictive power. Secondly, we show that applying this discretisation process to two-dimensional vector variables in addition to scalar variables yields a better model than only applying it to scalar variables and we describe novel algorithms and data structures for discretising one- and two-dimensional spaces from observations. Finally, we demonstrate that this method can be useful for planning or decision making in some domains where the state space exhibits stable regions of high probability and transitional regions of lesser probability. We provide evidence for these claims by evaluating the model learning algorithm in two dynamic, continuous domains involving simulated physics: the OpenArena computer game and a two-dimensional simulation of a bouncing ball falling onto uneven terrain.
18

Coordinated control of hot strip tandem rolling mill

McNeilly, Gordon January 1999 (has links)
No description available.
19

Fault-tolerant predictive control : a Gaussian process model based approach

Yang, Xiaoke January 2015 (has links)
No description available.
20

Analysis and design of neurodynamic approaches to nonlinear and robust model predictive control.

January 2014 (has links)
模型預測控制是一種基於模型的先進控制策略,它通過反復優化一個有限時域内的約束優化問題實時求解最優控制信號。作爲一種有效的多變量控制方法,模型預測控制在過程控制、機械人、經濟學等方面取得了巨大的成功。模型預測控制研究與發展的一個關鍵問題在於如何實現高性能非綫性和魯棒預測控制算法。實時優化是一項具有挑戰性的任務,尤其在優化問題時非凸優化的情況下,實時優化變得更爲艱巨。在模型預測控制取得發展的同時,以建立仿腦計算模型為目標的神經網絡研究也取得一些重要突破,尤其是在系統辨識和實時優化方面。神經網絡為解決模型預測控制面臨的瓶頸問題提供了有力的工具。 / 本篇論文重點討論基於神經動力學方法的模型預測控制的設計與分析。論文的主要目標在於設計高性能神經動力學算法進而提高模型預測控制的最優性與計算效率。論文包括兩大部分。第一部分討論如何在不需要求解非凸優化的前提下解決非綫性和魯棒模型預測控制。主要的解決方案是將非相信模型分解為帶有未知項的仿射模型,或將非綫性模型轉換為綫性變參數系統。仿射模型中的未知項通過極限學習機進行建模和數值補償。針對系統中的不塙定干擾,利用極小極大算法和擾動不變集方法獲取控制系統魯棒性。儅需要考慮多個評價指標是,採用目標規劃設計多目標優化算法。論文第一部分提出的設計方法可以將非綫性和魯邦模型預測控制設計為凸優化問題,進而採用神經動力學優化的方法進行實時求解。論文的第二部分設計了針對非凸優化的多神經網絡算法,並在此基礎上提出了模型預測控制算法。多神經網絡算法模型人類頭腦風暴的過程,同時應用多個神經網絡相互協作地進行全局搜索。神經網絡的動態方程指導其進行局部精確搜索,神經網絡之間的信息交換指導全局搜索。實驗結果表明該算法可以高效地獲得非凸優化的全局最優解。基於多神經網絡優化的的模型預測控制算法是一種創新性的高性能控制方法。論文的最後討論了應用模型預測控制解決海洋航行器的運動控制問題。 / Model predictive control (MPC) is an advanced model-based control strategy that generates control signals in real time by optimizing an objective function iteratively over a finite moving prediction horizon, subject to system constraints. As a very effective multivariable control technology, MPC has achieved enormous success in process industries, robotics, and economics. A major challenge of the MPC research and development lies in the realization of high-performance nonlinear and robust MPC algorithms. MPC requires to perform real time dynamic optimization, which is extremely demanding in terms of solution optimality and computational efficiency. The difficulty is significantly amplified when the optimization problem is nonconvex. / In parallel to the development of MPC, research on neural networks has made significant progress, aiming at building brain-like models for modeling complex systems and computing optimal solutions. It is envisioned that the advances in neural network research will play a more important role in the MPC synthesis. This thesis is concentrated on analysis and design of neurodynamic approaches to nonlinear and robust MPC. The primary objective is to improve solution optimality by developing highly efficient neurodynamic optimization methods. / The thesis is comprised of two coherent parts under a unified framework. The first part consists of several neurodynamics-based MPC approaches, aiming at solving nonlinear and robust MPC problems without confronting non-convexity. The nonlinear models are decomposed to input affine models with unknown terms, or transformed to linear parameter varying systems. The unknown terms are learned by using extreme learning machines via supervised learning. Minimax method and disturbance invariant tube method are used to achieve robustness against uncertainties. When multiobjective MPC is considered, goal programming technique is used to deal with multiple objectives. The presented techniques enable MPC to be reformulated as convex programs. Neurodynamic models with global convergence, guaranteed optimality, and low complexity are customized and applied for solving the convex programs in real time. Simulation results are presented to substantiate the effectiveness and to demonstrate the characteristics of proposed approaches. The second part consists of collective neurodynamic optimization approaches, aiming at directly solving the constrained nonconvex optimization problems in MPC. Multiple recurrent neural networks are exploited in framework of particle swarm optimization by emulating the paradigm of brainstorming. Each individual neural network carries out precise constrained local search, and the information exchange among neural networks guides the improvement of the solution quality. Implementation results on benchmark problems are included to show the superiority of the collective neurodynamic optimization approaches. The essence of the collective neurodynamic optimization lies in its global search capability and real time computational efficiency. By using collective neurodynamic optimization, high-performance nonlinear MPC methods can be realized. Finally, the thesis discusses applications of MPC on the motion control of marine vehicles. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Yan, Zheng. / Thesis (Ph.D.) Chinese University of Hong Kong, 2014. / Includes bibliographical references (leaves 186-203). / Abstracts also in Chinese.

Page generated in 0.0727 seconds