• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Trächtigkeitsdiagnostik bei Neuweltkameliden mittels nicht invasiver Methoden

Volkery, Janine 12 June 2013 (has links) (PDF)
Neuweltkameliden, Trächtigkeitsdiagnose, Hormone, Speichel, Milch, Urin Ziel der vorliegenden Arbeit war es, die trächtigkeitsassoziierten Hormone Progesteron (P4), Pregnanediol-Glucuronid (PdG), Östronsulfat (E1S) und Relaxin (RLN) in Spei-chel, Milch und Urin von tragenden und nicht tragenden Alpakas im Vergleich zur je-weiligen Blutkonzentration zu bestimmen, um ihre Eignung zur nicht invasiven Träch-tigkeitsdiagnostik zu untersuchen. Beprobt wurden, über einen Zeitraum von zwei Jahren, 36 Alpakastuten von sechs pri-vaten Züchtern in Sachsen jeweils vor der Bedeckung und in verschiedenen Stadien der Trächtigkeit (verifiziert durch eine transabdominale Ultraschalluntersuchung). Es wurden jeweils Serum-, Plasma-, Speichel-, Urin- und Milchproben gewonnen und die Hormonkonzentrationen mittels Enzymimmunoassay (EIA) bestimmt. Weiterhin wurden einige Milchproben in einem semiquantitativen Progesteron-Schnelltest für Rinder ein-gesetzt. P4-Konzentrationen steigen signifikant von Basalwerten beim nicht tragenden Tier von 0,35 ± 0,04 ng/ml auf 2,94 ± 0,11 ng/ml Plasma (bzw. von 0,26 ± 0,03 auf 2,87 ± 0,10 ng/ml Serum) bei tragenden Tieren an. Auch in Milch und im Urin tragender Alpakas sind signifikant höhere P4-Konzentrationen messbar: Sie steigen von basal 0,83 ± 0,06 ng/ml auf 4,09 ± 0,38 ng/ml Milch bzw. von 0,29 ± 0,04 ng P4/mg Krea auf 0,60 ± 0,06 ng P4/mg Krea im Urin. Die Urin-Konzentrationen von PdG sind signifikant höher bei graviden (152,73 ± 17,37 ng PdG/mg Krea) als bei ingraviden Alpakas (26,70 ± 2,80 ng PdG/mg Krea). Im Speichel sind weder von P4 noch von PdG Konzentrationsunterschiede zwischen den beiden Gruppen nachweisbar. Der P4-Schnelltest erkannte 28 von 31 Milchproben tragender Tiere richtig als tragend, was einem Prozentsatz von 90 % entspricht. Dage-gen wurden 22 von 32 Proben nicht tragender Tiere als nicht tragend identifiziert (69 %), wobei von den falsch positiven Milchproben jedoch 70% auch mit dem labor-gebundenen EIA falsch positive Ergebnisse lieferten. Während Blutkonzentrationen von RLN signifikant nach dem zweiten Trächtigkeitsmo-nat von basal 1,65 ± 0,56 ng/ml auf 11,69 ± 2,31 ng/ml (Plasma) bzw. von 0,95 ± 0,30 ng/ml auf 16,23 ± 3,05 ng/ml (Serum) ansteigen, sind keine Unterschiede in Milch, Speichel und Urin zwischen tragenden und nicht tragenden Tieren nachweisbar. Konzentrationen von E1S steigen erst im letzten Trächtigkeitsmonat signifikant an: Blutwerte steigen von basal 0,59 ± 0,07 ng/ml auf 3,43 ±0,55 ng/ml (Plasma) bzw. 0,32 ± 0,02 ng/ml auf 2,16 ± 0,43 ng/ml (Serum) und Urinwerte von basal 6,14 ± 0,53 ng E1S/mg Krea auf 104,03 ± 24,09 ng E1S/mg Krea. Speichel und Milchkonzentrationen unterscheiden sich nicht signifikant zwischen den beiden Gruppen. Die gemessenen Konzentrationen von P4, E1S und RLN im Blut bzw. PdG und E1S im Urin stimmen mit den Ergebnissen früherer Untersuchungen überein und können somit als Trächtigkeitsmarker bestätigt werden. Dies ist die erste Arbeit, die trächtigkeitsassoziierte Hormone in Speichel und Milch von Alpakas untersucht. Während die P4 Bestimmung in Milch sowie die Bestimmung von PdG und E1S in Urin geeignete Alternativen darstellen, ist Speichel für eine Trächtig-keitsdiagnostik beim Alpaka ungeeignet. Die Nutzung von Milch und Urin zur Trächtigkeitsdiagnose stellt insofern eine Vereinfa-chung der derzeitig gängigen Methoden (u. a. Blutprogesteron) dar, als dass der Besit-zer das Probenmaterial selbst gewinnen kann und dies mit erheblich weniger Stress für die Stuten verbunden ist. Die Bestimmung von P4 in Milch und PdG in Urin stellen so-mit geeignete Alternativen zur Frühdiagnostik im ersten Trächtigkeitsmonat dar, da zu diesem Zeitpunkt eine transabdominale Ultraschalluntersuchung noch nicht aussage-kräftig ist. Die vorliegende Arbeit leistet einen Beitrag, um die noch vergleichsweise kleine vor-handene Datenbank zur Endokrinologie der Reproduktion bei NWK zu erweitern. / Aims of the present study were the measurement of pregnancy-associated hormones progesterone (P4), pregnanediol-glucuronide (PdG), relaxin (RLN) and oestrone sul-phate (E1S) in saliva, milk and urine of pregnant and non-pregnant alpacas, to compare to their respective blood concentrations and to assess their potential use for pregnancy diagnosis. Samples were obtained over a course of two years from 36 female alpacas of 6 private alpaca breeders in Saxony (Germany) before mating and at different stages throughout pregnancy (confirmed by ultrasonography). Hormone concentrations in serum, plasma, saliva, urine and milk samples were determined using enzyme immunoassays (EIA). Some milk samples were also tested using a commercial on-farm P4 kit which is de-signed for dairy cattle. Concentrations of P4 increased significantly from basal values in non-pregnant alpacas of 0.35 ± 0.04 ng/ml to 2.94 ± 0.11 ng/ml in plasma (and from 0.26 ± 0.03 to 2.87 ± 0.10 ng/ml in serum) in pregnant animals. Milk and urine concentrations of P4 were sig-nificantly higher in pregnant alpacas: Values increased from basal 0.83 ± 0.06 ng/ml to 4.09 ± 0.38 ng/ml in milk and from 0.29 ± 0.04 ng P4/mg Cr to 0.60 ± 0.06 ng P4/mg Cr in urine. While PdG concentrations in urine were significantly higher in pregnant (152.73 ± 17.37 ng PdG/mg Cr) than in non-pregnant animals (26.70 ± 2.80 ng PdG/mg Cr), there were no differences in concentrations of P4 or PdG in saliva. The on-farm milk P4 test kit showed a sensitivity of 90% for diagnosis of pregnancy and a specificity of 69% for non-pregnancy. RLN concentrations in blood increased significantly after the 2nd month from basal 1.65 ± 0.56 ng/ml to 11.69 ± 2.31 ng/ml in plasma and from 0.95 ± 0.30 ng/ml to 16.23 ± 3.05 ng/ml in serum, whereas there were no differences in milk, saliva and urine between pregnant and non-pregnant animals. Hormone concentrations of E1S increase during the last month of pregnancy: Blood concentrations rise from basal values of 0.59 ± 0.07 ng/ml to 3.43 ± 0.55 ng/ml in plasma and from 0.32 ± 0.02 ng/ml to 2.16 ± 0.43 ng/ml in serum; urine concentrations from 6.14 ± 0.53 ng E1S/mg Cr to 104.03 ± 24.09 ng E1S/mg Cr. There were no sig-nificant differences in E1S concentrations in saliva and milk between pregnant and non-pregnant alpacas. Values of P4, E1S and RLN in blood as well as PdG and E1S in urine are comparable to previous reports in alpacas and therefore can be confirmed as an indicator for preg-nancy. This is the first study to include determination of pregnancy associated hormones in saliva and milk of alpacas. However, saliva seems to be unsuitable for pregnancy di-agnosis in alpacas, whereas P4 in milk, as well as PdG and E1S in urine seem to be adequate tools. The use of milk and urine would simplify pregnancy diagnosis in alpacas since, in con-trast to the current methods (e.g. blood P4 concentration and ultrasonography), the owners themselves can take the samples. The avoidance of blood sampling results in a considerable stress reduction for the animals and therefore reduces the risk for potential loss of pregnancies. The measurements of P4 in milk and PdG in urine are useful alternatives to pregnancy diagnosis, especially during the first month of pregnancy, when transcutaneous ultrasonography is not yet reliable. This work adds information to the comparatively small database for camelid reproduc-tive endocrinology.
12

Reasons for post-conception human immunodeficiency virus (HIV) testing among pregnant women in Gaborone, Botswana

Motseotsile, Baitlhatswi Gaolatlhe 07 October 2014 (has links)
M.Cur. (Midwifery and Neonatal Nursing Care) / Free voluntary counselling and testing (VeT) for Human Immunodeficiency Virus (HIV) by the international community and many African states is the entry point into HIV and Acquired Immunodeficiency Syndrome (AIDS) prevention, care, treatment and support. It is therefore worrisome that despite the Botswana government' multiple HIV preventative strategies, of the 56% Batswana who tested for HIV in 2008, only 34% know their status (National AIDS Coordinating Agency, Central Statistics Office & Ministry of Health, 2009:4). Among those who were tested, women outnumbered men, but even these women only had their HIV-status tested when they were already pregnant or when one of their children was suspected to have contracted AIDS, an observation that Hamblin and Reid (1991:4) has made years ago. Ethical standards were followed to conduct a study, the purpose of which was to explore and describe the reasons why women in Gaborone only volunteered to go for vcr of HIV when they were already pregnant, instead ofdoing so before they conceived. An exploratory, descriptive, qualitative and contextual design was used. Participants who met the sampling criteria were interviewed and data was audio-taped before transcription and analysis. An independent coder was involved to confirm the themes and sub-themes before relevant literature was searched. Strategies of trustworthiness were adhered to in the study (Lincoln & Guba, 1985:289-331). Findings revealed that the most significant reason for participants not testing for HIV prior to pregnancy was fear of consequences of an HIV-positive result, such as stigma and discrimination against them by their partners, families and communities should they test HIV-positive, Another reason was the socio-cultural beliefs, norms and values expressed in different forms. However, once they fell pregnant, they had themselves tested because their fear of losing their babies to HIV overruled their fear ofbeing ostracised by anybody else. Based on the findings, guidelines were formulated to assist midwives and HIV and AIDS counsellors to facilitate uptake of vcr of HIV prior to pregnancy among childbearing women and men from as young as +-15 years. Conclusions were drawn and recommendations made concerning midwifery practice, education and possible further research on this topic on a larger scale.
13

Trächtigkeitsdiagnostik bei Neuweltkameliden mittels nicht invasiver Methoden

Volkery, Janine 23 April 2013 (has links)
Neuweltkameliden, Trächtigkeitsdiagnose, Hormone, Speichel, Milch, Urin Ziel der vorliegenden Arbeit war es, die trächtigkeitsassoziierten Hormone Progesteron (P4), Pregnanediol-Glucuronid (PdG), Östronsulfat (E1S) und Relaxin (RLN) in Spei-chel, Milch und Urin von tragenden und nicht tragenden Alpakas im Vergleich zur je-weiligen Blutkonzentration zu bestimmen, um ihre Eignung zur nicht invasiven Träch-tigkeitsdiagnostik zu untersuchen. Beprobt wurden, über einen Zeitraum von zwei Jahren, 36 Alpakastuten von sechs pri-vaten Züchtern in Sachsen jeweils vor der Bedeckung und in verschiedenen Stadien der Trächtigkeit (verifiziert durch eine transabdominale Ultraschalluntersuchung). Es wurden jeweils Serum-, Plasma-, Speichel-, Urin- und Milchproben gewonnen und die Hormonkonzentrationen mittels Enzymimmunoassay (EIA) bestimmt. Weiterhin wurden einige Milchproben in einem semiquantitativen Progesteron-Schnelltest für Rinder ein-gesetzt. P4-Konzentrationen steigen signifikant von Basalwerten beim nicht tragenden Tier von 0,35 ± 0,04 ng/ml auf 2,94 ± 0,11 ng/ml Plasma (bzw. von 0,26 ± 0,03 auf 2,87 ± 0,10 ng/ml Serum) bei tragenden Tieren an. Auch in Milch und im Urin tragender Alpakas sind signifikant höhere P4-Konzentrationen messbar: Sie steigen von basal 0,83 ± 0,06 ng/ml auf 4,09 ± 0,38 ng/ml Milch bzw. von 0,29 ± 0,04 ng P4/mg Krea auf 0,60 ± 0,06 ng P4/mg Krea im Urin. Die Urin-Konzentrationen von PdG sind signifikant höher bei graviden (152,73 ± 17,37 ng PdG/mg Krea) als bei ingraviden Alpakas (26,70 ± 2,80 ng PdG/mg Krea). Im Speichel sind weder von P4 noch von PdG Konzentrationsunterschiede zwischen den beiden Gruppen nachweisbar. Der P4-Schnelltest erkannte 28 von 31 Milchproben tragender Tiere richtig als tragend, was einem Prozentsatz von 90 % entspricht. Dage-gen wurden 22 von 32 Proben nicht tragender Tiere als nicht tragend identifiziert (69 %), wobei von den falsch positiven Milchproben jedoch 70% auch mit dem labor-gebundenen EIA falsch positive Ergebnisse lieferten. Während Blutkonzentrationen von RLN signifikant nach dem zweiten Trächtigkeitsmo-nat von basal 1,65 ± 0,56 ng/ml auf 11,69 ± 2,31 ng/ml (Plasma) bzw. von 0,95 ± 0,30 ng/ml auf 16,23 ± 3,05 ng/ml (Serum) ansteigen, sind keine Unterschiede in Milch, Speichel und Urin zwischen tragenden und nicht tragenden Tieren nachweisbar. Konzentrationen von E1S steigen erst im letzten Trächtigkeitsmonat signifikant an: Blutwerte steigen von basal 0,59 ± 0,07 ng/ml auf 3,43 ±0,55 ng/ml (Plasma) bzw. 0,32 ± 0,02 ng/ml auf 2,16 ± 0,43 ng/ml (Serum) und Urinwerte von basal 6,14 ± 0,53 ng E1S/mg Krea auf 104,03 ± 24,09 ng E1S/mg Krea. Speichel und Milchkonzentrationen unterscheiden sich nicht signifikant zwischen den beiden Gruppen. Die gemessenen Konzentrationen von P4, E1S und RLN im Blut bzw. PdG und E1S im Urin stimmen mit den Ergebnissen früherer Untersuchungen überein und können somit als Trächtigkeitsmarker bestätigt werden. Dies ist die erste Arbeit, die trächtigkeitsassoziierte Hormone in Speichel und Milch von Alpakas untersucht. Während die P4 Bestimmung in Milch sowie die Bestimmung von PdG und E1S in Urin geeignete Alternativen darstellen, ist Speichel für eine Trächtig-keitsdiagnostik beim Alpaka ungeeignet. Die Nutzung von Milch und Urin zur Trächtigkeitsdiagnose stellt insofern eine Vereinfa-chung der derzeitig gängigen Methoden (u. a. Blutprogesteron) dar, als dass der Besit-zer das Probenmaterial selbst gewinnen kann und dies mit erheblich weniger Stress für die Stuten verbunden ist. Die Bestimmung von P4 in Milch und PdG in Urin stellen so-mit geeignete Alternativen zur Frühdiagnostik im ersten Trächtigkeitsmonat dar, da zu diesem Zeitpunkt eine transabdominale Ultraschalluntersuchung noch nicht aussage-kräftig ist. Die vorliegende Arbeit leistet einen Beitrag, um die noch vergleichsweise kleine vor-handene Datenbank zur Endokrinologie der Reproduktion bei NWK zu erweitern. / Aims of the present study were the measurement of pregnancy-associated hormones progesterone (P4), pregnanediol-glucuronide (PdG), relaxin (RLN) and oestrone sul-phate (E1S) in saliva, milk and urine of pregnant and non-pregnant alpacas, to compare to their respective blood concentrations and to assess their potential use for pregnancy diagnosis. Samples were obtained over a course of two years from 36 female alpacas of 6 private alpaca breeders in Saxony (Germany) before mating and at different stages throughout pregnancy (confirmed by ultrasonography). Hormone concentrations in serum, plasma, saliva, urine and milk samples were determined using enzyme immunoassays (EIA). Some milk samples were also tested using a commercial on-farm P4 kit which is de-signed for dairy cattle. Concentrations of P4 increased significantly from basal values in non-pregnant alpacas of 0.35 ± 0.04 ng/ml to 2.94 ± 0.11 ng/ml in plasma (and from 0.26 ± 0.03 to 2.87 ± 0.10 ng/ml in serum) in pregnant animals. Milk and urine concentrations of P4 were sig-nificantly higher in pregnant alpacas: Values increased from basal 0.83 ± 0.06 ng/ml to 4.09 ± 0.38 ng/ml in milk and from 0.29 ± 0.04 ng P4/mg Cr to 0.60 ± 0.06 ng P4/mg Cr in urine. While PdG concentrations in urine were significantly higher in pregnant (152.73 ± 17.37 ng PdG/mg Cr) than in non-pregnant animals (26.70 ± 2.80 ng PdG/mg Cr), there were no differences in concentrations of P4 or PdG in saliva. The on-farm milk P4 test kit showed a sensitivity of 90% for diagnosis of pregnancy and a specificity of 69% for non-pregnancy. RLN concentrations in blood increased significantly after the 2nd month from basal 1.65 ± 0.56 ng/ml to 11.69 ± 2.31 ng/ml in plasma and from 0.95 ± 0.30 ng/ml to 16.23 ± 3.05 ng/ml in serum, whereas there were no differences in milk, saliva and urine between pregnant and non-pregnant animals. Hormone concentrations of E1S increase during the last month of pregnancy: Blood concentrations rise from basal values of 0.59 ± 0.07 ng/ml to 3.43 ± 0.55 ng/ml in plasma and from 0.32 ± 0.02 ng/ml to 2.16 ± 0.43 ng/ml in serum; urine concentrations from 6.14 ± 0.53 ng E1S/mg Cr to 104.03 ± 24.09 ng E1S/mg Cr. There were no sig-nificant differences in E1S concentrations in saliva and milk between pregnant and non-pregnant alpacas. Values of P4, E1S and RLN in blood as well as PdG and E1S in urine are comparable to previous reports in alpacas and therefore can be confirmed as an indicator for preg-nancy. This is the first study to include determination of pregnancy associated hormones in saliva and milk of alpacas. However, saliva seems to be unsuitable for pregnancy di-agnosis in alpacas, whereas P4 in milk, as well as PdG and E1S in urine seem to be adequate tools. The use of milk and urine would simplify pregnancy diagnosis in alpacas since, in con-trast to the current methods (e.g. blood P4 concentration and ultrasonography), the owners themselves can take the samples. The avoidance of blood sampling results in a considerable stress reduction for the animals and therefore reduces the risk for potential loss of pregnancies. The measurements of P4 in milk and PdG in urine are useful alternatives to pregnancy diagnosis, especially during the first month of pregnancy, when transcutaneous ultrasonography is not yet reliable. This work adds information to the comparatively small database for camelid reproduc-tive endocrinology.
14

The efficiency of ultrasonorgraphy in monitoring ovarian structures and foetal development in goats, sheep and cattle as verified through laparoscopy and laparotomy

Siphugu, Steven Mbonalo 18 May 2018 (has links)
MSCAGR (Animal Science) / Department of Animal Science / The main purpose of this study was to assess the efficiency of ultrasonography in monitoring reproductive organs, pregnancy diagnosis, and foetal gender identification and to verify its reliability by laparoscopy and laparotomy, where applicable. Reproductive organs, pregnancy diagnosis and gender of the foetus were examined by A-mode ultrasound using 3.0 - 8.0 MHz trans-rectal transducer. A Sony Olympus Model laparoscope with a camera transducer was used to monitor the reproductive organs and pregnancy diagnosis. In monitoring the follicular dynamics, daily ultrasonography (ULTS) scanning was done for 17 days in sheep and for 21 days in both goats and cattle. Follicles of diameter ≥ 3 mm were selected for analysis of growth, ovulation and regression. For determining the efficiency of the techniques, laparoscopy (LAPSC) and laparotomy (LAPT) were used on days 3 and 10 of the goats and sheep oestrous cycle. The follicles were grouped into three categories according to their diameter as 3 - 4.9 mm, 5 - 7.9 mm and ≥ 8 mm, whereas the follicles of cattle were grouped as 3 - 4.9 mm, 5 - 9.9 mm and ≥ 10 mm. Early pregnancy diagnosis examinations were carried out from day 18 post insemination until pregnancy was confirmed. Foetal gender examinations were conducted from day 40 of pregnancy until the day the gender of the foetus was confirmed. Follicular development was accompanied by the occurrence of waves of follicular growth at different period of the oestrous cycle. The first follicular wave emerged on day 1.0 ± 0.4 in goats, 1.2 ± 0.4 in sheep and 2.2 ± 0.4 in cattle. The maximum diameter of the dominant follicles of observed follicular waves in goats was 7.3 ± 0.4 mm, 6.6 ± 0.2 mm, 7.3 ± 0.2 mm; in sheep was 6.4 ± 0.4 mm, 6.6 ± 0.4 mm and 6.7 ± 0.7 mm and in cattle was 13.1 ± 0.8 mm, 14.2 ± 0.6 mm and 15.7 ± 0.6 mm in wave 1, 2 and 3, respectively. However, the maximum size of the dominant follicle of the ovulatory wave in cattle was larger than the dominant follicles of both first and second waves, but in goats and sheep the dominant follicles were of similar size throughout the waves. In cattle, the ovulatory wave was shorter (p ˂ 0.05) than the duration of the first and second waves, while in sheep and goats were similar throughout the waves. In goats the total number of follicles counted in right and left ovaries under category 3 - 4.9 mm was lower with ULTS and LAPSC than with LAPT method (p ˂ 0.05). In sheep the mean number of follicles between 3 - 4.9 mm category in both right and left ovaries were different (p ˂ 0.05) between ULTS and LAPT. However, for categories 5 - 7.9 mm and ≥ 8 mm in both goats and sheep the mean numbers of follicles observed by all techniques were similar (p ˃ 0.05). In goats, pregnancy diagnosis accuracy improved from zero percent on day 18 to 100% on day 26 - 28, in sheep pregnancy diagnosis was 40% on day 18 and improved to 100% on day 20 - 22 vi of gestation. In cattle accuracy of pregnancy diagnosis was not possible at day 18 and gradually increased to 100% on day 30 - 32 of gestation. Out of 5 (100%) goat’s foetuses whose gender was determined, the diagnosis was correct in 100% (3/3) of the male foetuses and 100% (2/2) of the female foetuses. In sheep two foetuses were sexed as males while the other three were sexed as females and were both 100%. Out of 60% (3/5) of foetuses examined in cattle, 1 (100%) was identified as male and the remaining 2 (100%) were identified as females. The results obtained confirmed that the accuracy for foetal gender by ultrasonography was 100% in all foetuses observed. The current study demonstrated that trans-rectal ultrasonography examination is an efficient method for monitoring follicular dynamics, diagnosing pregnancy and foetal gender identification and that it is as reliable as laparoscopy and laparotomy where they were applied together. / NRF

Page generated in 0.1071 seconds