• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Developmental Competence of Murine Preimplantation Embryos by Supplementation of Anti-apoptotic Peptides

Fernandes, Roxanne 30 November 2011 (has links)
Mammalian preimplantation embryo development is prone to high rates of early embryo demise. Two underlying causes for failed development include the effect of sub-optimal culture media and maternal lethal effect (MLE) genes. In line with the growing evidence, we hypothesize that embryo fate is determined by the outcome of specific intracellular interactions between pro- and anti-apoptotic proteins under suboptimal culture conditions such as HTF medium and oxidative stress. Characterization of Nalp5, a MLE gene resulting in 2-cell embryo arrest, also found a significantly higher expression of pro-apoptotic proteins in knockout oocytes and embryos. With the use of two anti-apoptotic peptides, TAT-BH4 and Bax-inhibiting peptide (BIP), we attempted to improve embryo development. Our results found that neither peptide was able to improve embryo development in the Nalp5 model, or the HTF model. However, TAT-BH4 is capable of significantly improving developmental competence in embryos cultured under oxidative stress. Our findings suggest that supplementation of TAT-BH4 in embryo culture medium may offer a novel and cost-effective technique to improve embryogenesis of cultured embryos. However, further studies are still required.
2

Improving Developmental Competence of Murine Preimplantation Embryos by Supplementation of Anti-apoptotic Peptides

Fernandes, Roxanne 30 November 2011 (has links)
Mammalian preimplantation embryo development is prone to high rates of early embryo demise. Two underlying causes for failed development include the effect of sub-optimal culture media and maternal lethal effect (MLE) genes. In line with the growing evidence, we hypothesize that embryo fate is determined by the outcome of specific intracellular interactions between pro- and anti-apoptotic proteins under suboptimal culture conditions such as HTF medium and oxidative stress. Characterization of Nalp5, a MLE gene resulting in 2-cell embryo arrest, also found a significantly higher expression of pro-apoptotic proteins in knockout oocytes and embryos. With the use of two anti-apoptotic peptides, TAT-BH4 and Bax-inhibiting peptide (BIP), we attempted to improve embryo development. Our results found that neither peptide was able to improve embryo development in the Nalp5 model, or the HTF model. However, TAT-BH4 is capable of significantly improving developmental competence in embryos cultured under oxidative stress. Our findings suggest that supplementation of TAT-BH4 in embryo culture medium may offer a novel and cost-effective technique to improve embryogenesis of cultured embryos. However, further studies are still required.
3

Maintaining Proper Levels of DNA Methylation Marks Through the TET Family is Critical for Normal Embryo Development in Pigs

Uh, Kyung-Jun 24 August 2020 (has links)
DNA methylation is one of the principal epigenetic modifications that plays an essential role in transcriptional regulation. After fertilization, mammalian embryos undergo dynamic changes in genome-wide DNA methylation patterns and the changes are essential for normal embryo development. Ten-eleven translocation (TET) methylcytosine dioxygenases are implicated in DNA demethylation by catalyzing the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). The three members of TET protein family, TET1, TET2, and TET3, are highly expressed in preimplantation embryos in a stage-specific manner. Previous studies demonstrated that TET proteins are involved in diverse biological processes such as gene regulation, pluripotency maintenance, and cell differentiation by mediating 5mC oxidation. My dissertation research was conducted to elucidate the mechanistic roles of TET proteins in epigenetic reprogramming of mammalian embryos using porcine embryos as a model. The first set of studies focused on the relationship between TET proteins and pluripotency. To understand the role of TET proteins in establishing pluripotency in preimplantation embryos, CRISPR/Cas9 technology and TET-specific inhibitors were applied. TET1 depletion unexpectedly resulted in an increased expression of NANOG and ESRRB genes in blastocysts, although the DNA methylation levels of NANOG promoter were not changed. Interestingly, transcript abundance of TET3 was increased in blastocysts carrying inactivated TET1, which might have had an effect on the increase of NANOG and ESRRB. When the activity of TET enzymes was inhibited to eliminate the compensatory increase of TET3 under the absence of functional TET1, the expression levels of NANOG and ESRRB were decreased and methylation level of NANOG promoter was increased. In addition, ICM specification was impaired by the inhibition of TET enzymes. These results suggest that the TET family is a critical component of the pluripotency network of porcine embryos by regulating expression of genes involved in pluripotency and early lineage specification. In the next set of studies, the presence of TET3 isoforms in porcine oocytes and cumulus cells was investigated to dissect the gene structure of TET3 that could assist in understanding mechanistic actions of TET3 in the DNA demethylation process. Among the three TET3 isoforms identified in cumulus cells, only the pTET3L isoform, which contains CXXC domain that carry DNA binding property, was verified in mature porcine oocytes. Expression level of the pTET3L isoform was much higher in mature oocytes compared to that in somatic cells and tissues. In addition, the transcript level of this isoform was significantly increased during oocyte maturation. These results suggest that pTET3L isoform is predominantly present in mature porcine oocytes and that CXXC domain may play an important role in DNA demethylation in zygotes. In a follow-up study, the role of the TET3 CXXC domain in controlling post-fertilization demethylation in porcine embryos was investigated by injecting TET3 GFP-CXXC into mature porcine oocytes. The injected CXXC was exclusively localized in the pronuclei, indicating that the CXXC domain may localize TET3 to the nucleus. The CXXC overexpression reduced the 5mC level in zygotes and enhanced the DNA demethylation of the NANOG promoter in 2-cell stage embryos. Furthermore, the transcript abundance of NANOG and ESRRB was increased in blastocysts derived from GFP-CXXC overexpressing zygotes. These results provide an evidence that the CXXC domain of TET3 is critical for post-fertilization demethylation of porcine embryos and proper expression of pluripotency related genes in blastocysts. In the last set of studies, the impact of MBD proteins on porcine embryo development was examined under the hypothesis that competitive binding of MBD and TET proteins to 5mC contributes to the proper maintenance of DNA methylation levels in embryos. Cloning of porcine MBD1, MBD3, and MBD4 from mature oocytes indicates that the genes are highly conserved among different species, implying the involvement of porcine MBD proteins in the maintenance of DNA methylation. MBD1 overexpression in oocytes impaired preimplantation development of porcine embryos, suggesting that the MBD1 overexpression may have negatively affected porcine embryo development because proper DNA methylation levels were not preserved under the high level of MBD1. Collectively, the studies in my dissertation demonstrate that TET family proteins are important epigenetic players involved in the regulation of pluripotency and reprogramming of DNA methylation, and are thus crucial for normal embryo development. The findings in the dissertation will improve our understanding of epigenetic events occurring in mammalian embryos, and have the potential to overcome epigenetic defects that are observed in pluripotent stem cells and in-vitro derived embryos. / Doctor of Philosophy / Epigenetic modifications are heritable changes affecting the level of gene expression without changing the sequence of the genome. DNA methylation, one of the biggest epigenetic marks in mammalian genome, is often correlated to gene repression. In mammals, DNA methylation patterns are dramatically changed during preimplantation development to acquire embryonic developmental potential. Understanding of the epigenetic changes occurring in preimplantation embryos is necessary for producing healthy domestic animals in agriculture and for developing strategies for the treatment of epigenetic defects in human. Ten-eleven translocation (TET) family enzymes, TET1, TET2, and TET3, are known to function as a DNA methylation modifier by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). My dissertation research was performed to elucidate the role of TET family during preimplantation development using porcine embryos as a model. Pluripotency refers to the ability of cells to differentiate into all cell types of a mature organism. Pluripotent cells emerge in embryos as embryonic cells acquire lineage-specific characteristics. The first set of studies focused on the role of TET enzymes in regulating the pluripotency of porcine embryos. The impacts of inhibited activities of TET enzymes on the expression of pluripotency related genes were examined. We found that the inhibition of all TET enzymes leads to a decreased expression of pluripotency related genes, an altered DNA methylation level on a gene segment controlling pluripotency, and the impaired formation of pluripotent cell lineage in porcine embryos. This study demonstrates that the TET family is critical for the acquisition of pluripotency in porcine embryos. In the following sets of studies, the function of TET3 protein in the demethylation process occurring in preimplantation embryos was investigated. Fertilized mammalian embryos undergo genome-wide demethylation process to reset germ cell specific epigenetic marks into the embryonic epigenome. Previous studies indicate that TET3 is responsible for the demethylation process in mammalian embryos, although detailed mechanistic action of TET3 is still elusive. Here, we identified a predominant expression of a specific TET3 gene in porcine oocytes. The TET3 gene contained a CXXC domain, a potential DNA binding module, suggesting that TET3 may mediate DNA demethylation through its DNA binding property. To examine the function of the CXXC domain in TET3-mediated DNA demethylation, isolated CXXC domain was injected into porcine oocytes. The injection of CXXC domain facilitated DNA demethylation in embryos, demonstrating that the DNA binding property of TET3 is important for its functionality. In the last study, we investigated the importance of genes known to interact with TET enzymes in porcine embryos. Methyl-CpG-binding domain proteins (MBDs) have the ability to bind methylated region on the genome and play a critical role in mediating DNA methylation and gene repression. Our hypothesis was that a competitive binding of MBD and TET proteins to methylated regions was critical for proper DNA methylation levels in embryos. We identified that porcine MBD sequences were very similar to other species in terms of gene structure, indicating that the genes could also possess gene repressing activity by competing with TET enzymes during porcine embryo development. Injection of MBD1 mRNA to oocytes impaired normal embryo development, suggesting that the injected MBD1 may have negatively affected early embryo development in pigs by disrupting the proper maintenance of DNA methylation levels. My dissertation researches demonstrate that maintaining proper DNA methylation levels through the TET family is critical for normal embryo development in pigs. This research assists in improving our understating of epigenetic dynamics occurring in mammalian embryos and offers a potential solution to the epigenetic defects frequently observed in mammalian embryos produced through artificial reproductive technologies and pluripotent stem cells reprogrammed from somatic cells.
4

Cell fate specification and polarisation in mouse preimplantation epithelia

Doughton, Gail Louise January 2014 (has links)
Understanding the establishment of polarity and the cell fate specification of epithelial cells is important for developmental biology, regenerative medicine and the study of cancer. In this thesis, models of pre-implantation epithelial development are used to investigate the relationship between these two processes. The trophoblast is an extraembryonic epithelial tissue which contributes to the placenta. Addition of BMP4 to mouse and human embryonic stem (mES) cells grown in culture has been suggested to induce differentiation of cells to the trophoblast lineage. The use of this differentiation method was investigated as a possible model of trophoblast polarisation and cell fate specification. Unfortunately, with the protocol and reagents available this model did not appear to physiologically recapitulate trophoblast development and was not reliable. The primitive endoderm is an epithelium which arises from the inner cell mass during mammalian pre-implantation development. It faces the blastocoel cavity and later gives rise to the extraembryonic parietal and visceral endoderm. When mES cells are grown in suspension they form aggregates of differentiating cells known as embryoid bodies. The outermost cell layer of an embryoid body is an epithelial cell type comparable to the primitive endoderm. Embryoid bodies were used here to study the polarisation and cell fate specification of the primitive endoderm. The outer cells of these embryoid bodies were found to gradually acquire the hallmarks of polarised epithelial cells and express markers of primitive endoderm cell fate. The acquisition of epithelial polarity occurred prior to the maximal expression of cell fate markers. Fgfr/Erk signalling is known to be required for specification of the primitive endoderm, but its role in polarisation of this tissue is less well understood. To investigate the function of this pathway in the primitive endoderm, embryoid bodies were cultured in the presence of a small molecule inhibitor of Mek. This inhibitor caused a loss of expression of markers of primitive endoderm cell fate and maintenance of the pluripotency marker Nanog. In addition, a mislocalisation of apico-basolateral markers and disruption of the epithelial barrier which normally blocks free diffusion across the epithelial cell layer occurred. Two inhibitors of the Fgf receptor elicited similar phenotypes, suggesting that Fgf receptor signalling promotes Erkmediated polarisation. This data shows that the formation of a polarised primitive endoderm layer in embryoid bodies requires the Fgfr/Erk signalling pathway.
5

Examination of the Role of p53 in Embryo and Sperm Function

Gunay, Nida January 2007 (has links)
Master of Science in Medicine (by research) / Assisted reproductive technologies (ARTs) are very efficient in producing embryos, however many of these embryos have poor viability. No more than 50% of IVF embryos complete preimplantation development (Hardy et al. 2001). The poor viability is manifested as a reduced rate of cell proliferation and increased rates of apoptosis in the early embryo, resulting in high rates of embryo mortality (Hardy et al. 2001). The reduced viability occurs as a response to a range of cellular stressors that are a consequence of embryo culture (Hardy et al. 2001). The stress of culture disrupts some survival signalling pathways, metabolism of substrates and induces redox stress (Hardy et al. 2001). The cellular stress sensor p53 is expressed in the early embryo but is normally kept at very low levels (Li et al. 2005). This latency may be breached in IVF embryos following culture of zygotes in vitro for 96 hours, resulting in the up-regulation and nuclear accumulation of p53 (Li et al. 2005). Activation of the p53 stress-sensing pathway in the early mouse embryo by culture in vitro causes a marked loss of their developmental competence (Li et al. 2005). This study aimed to establish whether benefits could be obtained by culturing mice IVF embryos in the presence of p53 protein inhibitors. IVF zygotes were cultured individually in 10µl drops of 1.25, 2.5, 5 or 10µM Pifithrin-a (PFTa) in 0.05% DMSO for 96 hours. On day 5 the development stage was assessed. Embryos reaching the blastocyst stage were fixed and stained with Hoechst 33342 for total cell count and the proportion of nuclei with normal and abnormal morphology. There was an increase in the blastocyst rate, total cell count and the proportion of nuclei in a blastocyst with normal nuclei in 10µM-treated embryos. This study also aimed to determine whether benefits could be obtained by incubating mouse IVF sperm with p53 protein inhibitors during IVF. IVF sperm was treated with 1.25, 2.5, 5 or 10µM of PFTa in 0.05% DMSO during incubation with oocytes for 6 hours. Resulting zygotes were cultured for 96 hours individually in 10µl drops of MODHTFM. On day 5 the development stage was assessed. Embryos reaching the blastocyst stage were fixed and stained with Hoechst 33342 for total cell count and the proportion of nuclei with normal and abnormal morphology. There was a reduction in the proportion of fragmented nuclei in blastocysts derived from 1.25 and 10µM-treated sperm. 10µM treated sperm increased the total cell count, the proportion of normal nuclei in a blastocyst and the blastocyst development rate. IVF sperm incubated with 1.25µM PFTa during insemination of oocytes increased the fertilisation rate. Another aim of this study was to establish whether p53 siRNA could inhibit p53 mRNA in mice IVF embryos and if so, whether this would improve embryo viability in culture. IVF zygotes were transfected with 15nM p53 small inhibiting RNA (siRNA) and 0.8% Oligofectamine Reagent immediately, 24 h, 48 h and 72 h after IVF then cultured individually in 10µl drops of MOD-HTFM for a total of 96 hours. On day 5 the blastocyst rate was assessed and immunofluorescence performed probing for p53. There was no significant reduction in p53 expression and no improvement in blastocyst rate at any of the transfection times. However, there was a decrease in the proportion of nuclei which expressed p53 when p53 siRNA was transfected 72 hours after IVF. Also, it was determined that siRNA was efficiently being delivered into the preimplantation embryo with Oligofectamine Reagent. Lastly, this study aimed to determine whether mice sperm with p53 gene deletions have a selective advantage in fertilising the oocyte compared to their wild-type counterparts. p53+/- males were mated with p53+/+ females and the resulting zygotes genotyped after 24 hours of culture. More than 50% of offspring had a p53+/+ genotype. There was no selective advantage for p53 null sperm to fertilise the oocyte, there was actually a disadvantage. The selective disadvantage for p53 null sperm to fertilise the F1 hybrid oocyte in IVF compared to its wild-type counterparts may imply that p53 null sperm are not as viable and may have a survival disadvantage. The reduction in fertility of p53 null sperm in vitro infers that p53 function may be important for the fertility of the mouse sperm in vitro. The results of this thesis could establish means of improving human embryo viability in ART, some examples being P53 protein inhibition in preimplantation embryos during culture prior to transfer to the uterus, or P53 protein inhibition in IVF sperm. The use of the new technology, p53 siRNA was not effective in inhibiting p53 expression, although the build-up experiments determined that siRNA is efficiently delivered into the preimplantation embryo with Oligofectamine Reagent. The demonstration that p53 null sperm has a selective disadvantage in fertilising the oocyte compared to their wild-type counterparts does not indicate a positive selection pressure for naturally occurring mutations to this gene. And so, there is no concern regarding the genetic and epigenetic risks to progeny arising from assisted reproductive technologies with respect to sperm.
6

Examination of the Role of p53 in Embryo and Sperm Function

Gunay, Nida January 2007 (has links)
Master of Science in Medicine (by research) / Assisted reproductive technologies (ARTs) are very efficient in producing embryos, however many of these embryos have poor viability. No more than 50% of IVF embryos complete preimplantation development (Hardy et al. 2001). The poor viability is manifested as a reduced rate of cell proliferation and increased rates of apoptosis in the early embryo, resulting in high rates of embryo mortality (Hardy et al. 2001). The reduced viability occurs as a response to a range of cellular stressors that are a consequence of embryo culture (Hardy et al. 2001). The stress of culture disrupts some survival signalling pathways, metabolism of substrates and induces redox stress (Hardy et al. 2001). The cellular stress sensor p53 is expressed in the early embryo but is normally kept at very low levels (Li et al. 2005). This latency may be breached in IVF embryos following culture of zygotes in vitro for 96 hours, resulting in the up-regulation and nuclear accumulation of p53 (Li et al. 2005). Activation of the p53 stress-sensing pathway in the early mouse embryo by culture in vitro causes a marked loss of their developmental competence (Li et al. 2005). This study aimed to establish whether benefits could be obtained by culturing mice IVF embryos in the presence of p53 protein inhibitors. IVF zygotes were cultured individually in 10µl drops of 1.25, 2.5, 5 or 10µM Pifithrin-a (PFTa) in 0.05% DMSO for 96 hours. On day 5 the development stage was assessed. Embryos reaching the blastocyst stage were fixed and stained with Hoechst 33342 for total cell count and the proportion of nuclei with normal and abnormal morphology. There was an increase in the blastocyst rate, total cell count and the proportion of nuclei in a blastocyst with normal nuclei in 10µM-treated embryos. This study also aimed to determine whether benefits could be obtained by incubating mouse IVF sperm with p53 protein inhibitors during IVF. IVF sperm was treated with 1.25, 2.5, 5 or 10µM of PFTa in 0.05% DMSO during incubation with oocytes for 6 hours. Resulting zygotes were cultured for 96 hours individually in 10µl drops of MODHTFM. On day 5 the development stage was assessed. Embryos reaching the blastocyst stage were fixed and stained with Hoechst 33342 for total cell count and the proportion of nuclei with normal and abnormal morphology. There was a reduction in the proportion of fragmented nuclei in blastocysts derived from 1.25 and 10µM-treated sperm. 10µM treated sperm increased the total cell count, the proportion of normal nuclei in a blastocyst and the blastocyst development rate. IVF sperm incubated with 1.25µM PFTa during insemination of oocytes increased the fertilisation rate. Another aim of this study was to establish whether p53 siRNA could inhibit p53 mRNA in mice IVF embryos and if so, whether this would improve embryo viability in culture. IVF zygotes were transfected with 15nM p53 small inhibiting RNA (siRNA) and 0.8% Oligofectamine Reagent immediately, 24 h, 48 h and 72 h after IVF then cultured individually in 10µl drops of MOD-HTFM for a total of 96 hours. On day 5 the blastocyst rate was assessed and immunofluorescence performed probing for p53. There was no significant reduction in p53 expression and no improvement in blastocyst rate at any of the transfection times. However, there was a decrease in the proportion of nuclei which expressed p53 when p53 siRNA was transfected 72 hours after IVF. Also, it was determined that siRNA was efficiently being delivered into the preimplantation embryo with Oligofectamine Reagent. Lastly, this study aimed to determine whether mice sperm with p53 gene deletions have a selective advantage in fertilising the oocyte compared to their wild-type counterparts. p53+/- males were mated with p53+/+ females and the resulting zygotes genotyped after 24 hours of culture. More than 50% of offspring had a p53+/+ genotype. There was no selective advantage for p53 null sperm to fertilise the oocyte, there was actually a disadvantage. The selective disadvantage for p53 null sperm to fertilise the F1 hybrid oocyte in IVF compared to its wild-type counterparts may imply that p53 null sperm are not as viable and may have a survival disadvantage. The reduction in fertility of p53 null sperm in vitro infers that p53 function may be important for the fertility of the mouse sperm in vitro. The results of this thesis could establish means of improving human embryo viability in ART, some examples being P53 protein inhibition in preimplantation embryos during culture prior to transfer to the uterus, or P53 protein inhibition in IVF sperm. The use of the new technology, p53 siRNA was not effective in inhibiting p53 expression, although the build-up experiments determined that siRNA is efficiently delivered into the preimplantation embryo with Oligofectamine Reagent. The demonstration that p53 null sperm has a selective disadvantage in fertilising the oocyte compared to their wild-type counterparts does not indicate a positive selection pressure for naturally occurring mutations to this gene. And so, there is no concern regarding the genetic and epigenetic risks to progeny arising from assisted reproductive technologies with respect to sperm.
7

Infra-red laser applications in the reproductive sciences : improving safety for assisted reproductive technology and developing novel research tools

Davidson, Lien M. January 2017 (has links)
Assisted reproductive technology (ART) has been rapidly expanding since the birth of Louise Brown, the first test tube baby, in 1978. Although an increasingly complex array of laboratory skills and procedures have been developed for infertility treatments, the success rate of ART remains low. In an attempt to make ART safer and more efficient, international medical practice is trending towards single embryo transfers and the use of innovative, sophisticated technologies to identify promising gametes and embryos with the highest potential to generate a pregnancy. Laser technology is increasingly being used to accomplish these aims. The application of lasers for ART has been successfully employed in clinical practice for some time now and is continually the subject of investigative research in order to generate new methods to improve operations. Moreover, lasers serve as a powerful tool at the forefront of investigative research in the reproductive sciences, assisting in broadening our understanding of reproductive and developmental biology. Nevertheless, there is a paucity of literature pertaining to the safe standardisation of such laser procedures with evidence at the molecular level. The primary aim of this thesis was to optimise applications of laser technology for clinical ART and research applications in the reproductive sciences. This thesis utilised the mouse embryo model to investigate potential deleterious effects of different laser treatment applications, both by the operator and hardware manufacturer. Safe and unsafe laser operator parameters were elucidated by assessing deleterious effects to the plasma membrane integrity, blastocyst survival rate, DNA fragmentation levels, and changes in gene expression of key developmental genes. The effect of altering the laser hardware to lower the power output was evaluated and it was determined that if a lower power laser is used to deliver a set amount of energy over a longer period of time, a smaller amount of damage is incurred. Work in this thesis also established a new method in which laser technology can be used as a research tool for the reproductive sciences, by creating a novel stimuli-responsive laser-activated nanoparticle delivery system with spatial control and increased efficiency in a mammalian cell model. The field of reproductive science continues to benefit greatly from laser application clinically to improve infertility treatments, and in research, to elucidate mechanisms underlying infertility, with a hope of increasing our understanding and eventually developing new treatment options.
8

Causes and consequences of chromosome segregation errors in the mouse preimplantation embryo

Vázquez de Castro Diez, Cayetana 04 1900 (has links)
La division cellulaire est un processus biologique universel nécessaire à la reproduction, au développement, à la survie cellulaire ainsi qu’à la réparation des tissus. Une ségrégation chromosomique exacte pendant la mitose est essentielle pour une répartition égale des chromosomes répliqués entre les cellules filles. Des erreurs dans la ségrégation des chromosomes mènent à une condition appelée aneuploïdie, définie par un nombre inadéquat de chromosomes dans une cellule. L’aneuploïdie est associée à une altération de la santé cellulaire, la tumorigénèse, des malformations congénitales et l'infertilité. Contre toute attente, les embryons préimplantatoires de mammifères, dont les humains, consistent souvent en un mélange de cellules euploïdes et de cellules aneuploïdes. Ce mosaïcisme est inexorablement causé par des erreurs dans la ségrégation des chromosomes au cours des divisions mitotiques suivant la fécondation et est associé à un potentiel de développement réduit lors des traitements de fertilité. Malgré sa découverte il y a 25 ans, les mécanismes qui sous-tendent l’apparition de l'aneuploïdie mosaïque dans les embryons préimplantatoires sont toujours méconnus. Pour explorer les causes et les conséquences des erreurs de ségrégation chromosomique, des approches d'imagerie de fine pointe ont été utilisées sur des embryons préimplantatoires murins. L'analyse de la dynamique de la ségrégation des chromosomes via l’imagerie de cellules vivantes a permis d’identifier les chromosomes retardataires, lors de l’anaphase, comme la forme la plus répandue des erreurs de ségrégation. Ces chromosomes retardataires entraînent fréquemment une encapsulation de chromosome unique dans une structure appelée micronoyau. D'autres expériences d'imagerie par immunofluorescence sur des cellules vivantes ou fixées ont révélé que les chromosomes des micronoyaux subissent des dommages importants à l'ADN et sont mal répartis de manière récurrente lors des divisions cellulaires subséquentes dans la phase préimplantatoire. D’autres approches ont aussi permis d’examiner l'efficacité du mécanisme de contrôle de l’assemblage du fuseau mitotique, (SAC pour Spindle Assembly Checkpoint). Les résultats obtenus attestent que le SAC fonctionne, cependant la signalisation liée au SAC n’est pas efficace et ne permet pas de différer l'anaphase, malgré la présence de chromosomes retardataires et ce indépendamment de la taille des cellules. Les résultats présentés révèlent aussi qu’une inhibition partielle d’une cible du SAC, le complexe de promotion de l'anaphase (APC/C), cause une mitose prolongée et une réduction des erreurs de ségrégation. En outre, les études présentées démontrent que la fonction déficiente du SAC pendant le développement préimplantatoire est la cause principale d’une forte incidence de chromosomes retardataires qui entraînent une mauvaise ségrégation chromosomique répétée et qui causent une aneuploïdie mosaïque dans l’embryon. De plus, ce travail fournit la preuve que la modulation pharmacologique de la signalisation SAC-APC/C permet d’éviter les erreurs de ségrégation des chromosomes dans les embryons précoces. En conclusion, ces résultats apportent de nouvelles perspectives sur les causes et la nature des erreurs de ségrégation chromosomique dans les embryons. De plus, ce travail apporte de nouvelles explications mécanistiques sur l'apparition du mosaïcisme dans les embryons ce qui aura des implications importantes dans la détection et la prévention thérapeutique potentielle de l'aneuploïdie mosaïque dans les embryons préimplantatoires. / Cell division is a universal biological process necessary for reproduction, development, cell survival and the maintenance and repair of tissues. Accurate chromosome segregation during mitosis is essential to ensure replicated chromosomes are partitioned equally into daughter cells. Errors in chromosome segregation often result in cells with abnormal numbers of chromosomes, a condition termed aneuploidy, which is associated with impaired cellular health, tumorigenesis, congenital defects and infertility. Counterintuitively, preimplantation embryos from many mammalian species, including humans, often consist of a mixture euploid and aneuploid cells. Such mosaic aneuploidy in embryos is inexorably caused by errors in chromosome segregation during mitotic divisions following fertilization and has been associated with reduced developmental potential in fertility treatments. However, ever since its discovery 25 years ago, how and why mosaic aneuploidy arises in the preimplantation embryo has remained elusive. To explore the causes and consequences of embryonic chromosome segregation errors, advanced imaging approaches were employed in the mouse preimplantation embryo. Live cell imaging analysis of chromosome segregation dynamics identified lagging anaphase chromosomes as the most prevalent form of chromosome mis-segregation in embryos. Lagging chromosomes frequently result in the encapsulation of single chromosomes into micronuclei, which occur in embryos in vitro and in vivo. Further live imaging and immunofluorescence experiments revealed chromosomes within micronuclei are subject to extensive DNA damage and centromeric identity loss, failing to assemble functional kinetochores and being recurrently mis-segregated during ensuing cell divisions in preimplantation development. To uncover the underlying causes for the increased propensity for chromosome mis-segregation in embryos, live imaging and loss-of-function approaches were used to examine the effectiveness of the mitotic safeguard mechanism, the Spindle Assembly Checkpoint (SAC). These studies demonstrated that the SAC normally functions to prevent segregation errors during preimplantation development but SAC signaling at misaligned chromosomes fails to delay anaphase. Moreover, SAC failure in embryos is most evident during mid-preimplantation development, independent of cell size. Partial inhibition of SAC target, the Anaphase Promoting Complex (APC/C), extended mitosis and reduced chromosome segregation errors in embryos. These studies have uncovered deficient SAC function during preimplantation development as a major cause for the high incidence of lagging chromosomes in embryos, which result in repeated mis-segregation of single chromosomes in a manner that necessarily causes mosaic aneuploidy. Additionally, this work provides proof-of-principle demonstration that pharmacological modulation of SAC-APC/C signalling can avert chromosome segregation errors in the early embryo. Altogether, these findings present new insights into the causes and nature of chromosome mis-segregation in embryos, providing novel mechanistic explanations for the occurrence of mosaicism that will have substantial implications for the detection and potential therapeutic prevention of aneuploidy in preimplantation embryos.

Page generated in 0.1095 seconds