• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Causes and consequences of chromosome segregation errors in the mouse preimplantation embryo

Vázquez de Castro Diez, Cayetana 04 1900 (has links)
La division cellulaire est un processus biologique universel nécessaire à la reproduction, au développement, à la survie cellulaire ainsi qu’à la réparation des tissus. Une ségrégation chromosomique exacte pendant la mitose est essentielle pour une répartition égale des chromosomes répliqués entre les cellules filles. Des erreurs dans la ségrégation des chromosomes mènent à une condition appelée aneuploïdie, définie par un nombre inadéquat de chromosomes dans une cellule. L’aneuploïdie est associée à une altération de la santé cellulaire, la tumorigénèse, des malformations congénitales et l'infertilité. Contre toute attente, les embryons préimplantatoires de mammifères, dont les humains, consistent souvent en un mélange de cellules euploïdes et de cellules aneuploïdes. Ce mosaïcisme est inexorablement causé par des erreurs dans la ségrégation des chromosomes au cours des divisions mitotiques suivant la fécondation et est associé à un potentiel de développement réduit lors des traitements de fertilité. Malgré sa découverte il y a 25 ans, les mécanismes qui sous-tendent l’apparition de l'aneuploïdie mosaïque dans les embryons préimplantatoires sont toujours méconnus. Pour explorer les causes et les conséquences des erreurs de ségrégation chromosomique, des approches d'imagerie de fine pointe ont été utilisées sur des embryons préimplantatoires murins. L'analyse de la dynamique de la ségrégation des chromosomes via l’imagerie de cellules vivantes a permis d’identifier les chromosomes retardataires, lors de l’anaphase, comme la forme la plus répandue des erreurs de ségrégation. Ces chromosomes retardataires entraînent fréquemment une encapsulation de chromosome unique dans une structure appelée micronoyau. D'autres expériences d'imagerie par immunofluorescence sur des cellules vivantes ou fixées ont révélé que les chromosomes des micronoyaux subissent des dommages importants à l'ADN et sont mal répartis de manière récurrente lors des divisions cellulaires subséquentes dans la phase préimplantatoire. D’autres approches ont aussi permis d’examiner l'efficacité du mécanisme de contrôle de l’assemblage du fuseau mitotique, (SAC pour Spindle Assembly Checkpoint). Les résultats obtenus attestent que le SAC fonctionne, cependant la signalisation liée au SAC n’est pas efficace et ne permet pas de différer l'anaphase, malgré la présence de chromosomes retardataires et ce indépendamment de la taille des cellules. Les résultats présentés révèlent aussi qu’une inhibition partielle d’une cible du SAC, le complexe de promotion de l'anaphase (APC/C), cause une mitose prolongée et une réduction des erreurs de ségrégation. En outre, les études présentées démontrent que la fonction déficiente du SAC pendant le développement préimplantatoire est la cause principale d’une forte incidence de chromosomes retardataires qui entraînent une mauvaise ségrégation chromosomique répétée et qui causent une aneuploïdie mosaïque dans l’embryon. De plus, ce travail fournit la preuve que la modulation pharmacologique de la signalisation SAC-APC/C permet d’éviter les erreurs de ségrégation des chromosomes dans les embryons précoces. En conclusion, ces résultats apportent de nouvelles perspectives sur les causes et la nature des erreurs de ségrégation chromosomique dans les embryons. De plus, ce travail apporte de nouvelles explications mécanistiques sur l'apparition du mosaïcisme dans les embryons ce qui aura des implications importantes dans la détection et la prévention thérapeutique potentielle de l'aneuploïdie mosaïque dans les embryons préimplantatoires. / Cell division is a universal biological process necessary for reproduction, development, cell survival and the maintenance and repair of tissues. Accurate chromosome segregation during mitosis is essential to ensure replicated chromosomes are partitioned equally into daughter cells. Errors in chromosome segregation often result in cells with abnormal numbers of chromosomes, a condition termed aneuploidy, which is associated with impaired cellular health, tumorigenesis, congenital defects and infertility. Counterintuitively, preimplantation embryos from many mammalian species, including humans, often consist of a mixture euploid and aneuploid cells. Such mosaic aneuploidy in embryos is inexorably caused by errors in chromosome segregation during mitotic divisions following fertilization and has been associated with reduced developmental potential in fertility treatments. However, ever since its discovery 25 years ago, how and why mosaic aneuploidy arises in the preimplantation embryo has remained elusive. To explore the causes and consequences of embryonic chromosome segregation errors, advanced imaging approaches were employed in the mouse preimplantation embryo. Live cell imaging analysis of chromosome segregation dynamics identified lagging anaphase chromosomes as the most prevalent form of chromosome mis-segregation in embryos. Lagging chromosomes frequently result in the encapsulation of single chromosomes into micronuclei, which occur in embryos in vitro and in vivo. Further live imaging and immunofluorescence experiments revealed chromosomes within micronuclei are subject to extensive DNA damage and centromeric identity loss, failing to assemble functional kinetochores and being recurrently mis-segregated during ensuing cell divisions in preimplantation development. To uncover the underlying causes for the increased propensity for chromosome mis-segregation in embryos, live imaging and loss-of-function approaches were used to examine the effectiveness of the mitotic safeguard mechanism, the Spindle Assembly Checkpoint (SAC). These studies demonstrated that the SAC normally functions to prevent segregation errors during preimplantation development but SAC signaling at misaligned chromosomes fails to delay anaphase. Moreover, SAC failure in embryos is most evident during mid-preimplantation development, independent of cell size. Partial inhibition of SAC target, the Anaphase Promoting Complex (APC/C), extended mitosis and reduced chromosome segregation errors in embryos. These studies have uncovered deficient SAC function during preimplantation development as a major cause for the high incidence of lagging chromosomes in embryos, which result in repeated mis-segregation of single chromosomes in a manner that necessarily causes mosaic aneuploidy. Additionally, this work provides proof-of-principle demonstration that pharmacological modulation of SAC-APC/C signalling can avert chromosome segregation errors in the early embryo. Altogether, these findings present new insights into the causes and nature of chromosome mis-segregation in embryos, providing novel mechanistic explanations for the occurrence of mosaicism that will have substantial implications for the detection and potential therapeutic prevention of aneuploidy in preimplantation embryos.
2

Cytokinesis in the mouse preimplantation embryo : mechanism and consequence of failure

Gomes Paim, Lia Mara 01 1900 (has links)
Essentiel au maintien d’un organisme sain, la division cellulaire est un processus biologique composée de deux phases : la mitose et la cytokinèse. Au cours de la mitose, un fuseau mitotique bipolaire est assemblé et les chromosomes s’alignent au niveau de la plaque métaphasique par l’attachement des kinétochores aux microtubules du fuseau. Une fois les chromosomes alignés, les chromatides soeurs sont séparées par les microtubules pendant l'anaphase et sont ségréguées entre les cellules filles. La cytokinèse est initiée peu après le début de l'anaphase, marquant ainsi la fin de la division cellulaire en séparant le cytoplasme en deux nouvelles cellules filles. Une exécution précise de la mitose et de la cytokinèse est essentielle pour le maintien de l'intégrité du génome. L'échec de l'un de ces processus affecte la fidélité génétique. Les erreurs de ségrégation des chromosomes durant la mitose peuvent entraîner un gain ou une perte de chromosomes entiers, appelé aneuploïdie. Tandis que l'échec de la cytokinèse conduit à la formation d'une cellule binucléée avec un génome entièrement dupliqué, appelé tétraploïdie. Dans les cellules somatiques, la tétraploïdie peut conduire à l'arrêt du cycle cellulaire, à la mort cellulaire, ou provoquer une instabilité chromosomique (CIN), favorisant ainsi la prolifération de cellules avec un potentiel tumorigène. Par conséquent, il est essentiel de bien comprendre la régulation et les causes potentielles de l’échec de la cytokinèse en particulier dans le contexte des systèmes multicellulaires comme l’embryon. En effet, dans ces systèmes, la réduction progressives de la taille des cellules coïncident avec les principaux évènements du développement. De plus, la binucléation est fréquemment observée dans les cliniques de fertilité chez les embryons humains. Cependant, l’impact de la binucléation sur les divisions préimplantatoires demeure inexpliqué à ce jour. Afin de déterminer les conséquences de la tétraploïdie, nous avons utilisé l'embryon de souris pour modèle et réalisé des expériences d'immunofluorescence à haute résolution et une imagerie sur cellules vivantes. Nous avons découvert que la tétraploïdie chez les embryons de souris provoque une CIN et l'aneuploïdie par un mécanisme différent de celui des cellules somatiques. Dans les cellules somatiques, la formation des fuseaux multipolaires causée par des centrosomes surnuméraires est le principal mécanisme conduisant à la tétraploïdie et ainsi, à une CIN. En revanche, chez les embryons de souris, qui ne possèdent pas de centrosomes, la tétraploïdie ne conduit pas à la formation des fuseaux multipolaires. Les embryons tétraploïdes de souris développent une CIN en raison d’une réduction du renouvellement des microtubules et d’une altération de l’activité de correction d’erreurs dans l’attachement des kinétochores aux microtubules. Ainsi, une mauvaise correction de l’attachement des kinétochores aux microtubules entraîne des niveaux élevés d'erreurs de ségrégation chromosomique. Dans le cadre d'une étude de suivi, nous avons ensuite utilisé des différentes expériences d'imageries sur des cellules vivantes et d'immunofluorescences. Celles-ci furent couplées à des micromanipulations de la taille des cellules, des techniques modifiant l'adhésion cellulaire et des approches de knock-down des protéines pour étudier les mécanismes de régulation de la cytokinèse. Les expériences d'imageries sur cellules vivantes et les micromanipulations du volume cytoplasmique ont démontré que la taille des cellules détermine la vitesse de constriction de l'anneau contractile, c'est-à-dire que la vitesse de constriction devient progressivement plus lente à mesure que la taille des cellules diminue. Cependant, ce phénomène n'a lieu que lorsque les embryons atteignent le stade de 16 cellules ce qui suggère qu'une limite supérieure de vitesse de constriction peut exister pour restreindre l’augmentation de cette vitesse quand les cellules sont trop grandes. La taille des cellules étant un déterminant de la progression de la cytokinèse, nos expériences de knock-down des protéines ont, de plus, démontré que la formation de la polarité cellulaire a un impact négatif sur l'assemblage et la constriction de l'anneau contractile dans les cellules externes au stade de morula. Plus précisément, nous avons constaté que la polarité limite le recrutement des composants de la cytokinèse spécifiquement d'un côté de l'anneau contractile, provoquant ainsi un déséquilibre de l’ingression du sillon de clivage et réduisant la vitesse de constriction dans les cellules externes. Nous spéculons que la polarité cellulaire agit comme un obstacle à la progression de la cytokinèse, rendant ainsi les cellules externes plus sensibles à un échec de la cytokinèse. Ces études ont démontré un nouveau mécanisme par lequel la tétraploïdie conduit à l’instabilité chromosomique et à l’aneuploïdie chez les embryons. Ainsi un défaut de la dynamique de correction de l’attachement des kinétochores aux microtubules entraîne une mauvaise ségrégation des chromosomes indépendamment à la formation des fuseaux multipolaires. Ce travail a mis en évidence un rôle inhibiteur de la polarité apicale inattendu sur la machinerie cytokinétique. Cette inhibition pourrait fournir une explication mécanistique de l’incidence élevée de la binucléation dans le trophectoderme. Dans l'ensemble, ces résultats contribuent à notre compréhension du contrôle spatio-temporel de la cytokinèse au cours du développement embryonnaire et fournissent de nouvelles informations mécanistiques sur les origines et les conséquences biologiques de la tétraploïdie chez les embryons préimplantatoires. Les résultats présentés dans cette thèse ont des implications cliniques importantes, puisqu’ils fournissent des preuves définitives que la tétraploïdie générée par un échec de la cytokinèse est délétère pour le développement embryonnaire. Ces travaux mettent ainsi en lumière que la binucléation est un critère de sélection embryonnaire important à considérer lors des traitements de fertilité. / Cell division is comprised of mitosis and cytokinesis and is an essential biological process for the maintenance of healthy organisms. During mitosis, a bipolar spindle is assembled, and the chromosomes are aligned at the metaphase plate via the attachment of kinetochores to spindle microtubules. Once chromosome alignment is achieved, the sister chromatids are pulled apart by the microtubules during anaphase and segregated into the nascent daughter cells. Cytokinesis is initiated after anaphase onset and marks the completion of cell division by partitioning the cytoplasm of the dividing cell into two new daughter cells. Successful and timely completion of both mitosis and cytokinesis is key for the maintenance of genome integrity, and failure in either one of these processes affects genetic fidelity. Whereas chromosome segregation errors in mitosis can lead to whole chromosome gains or losses, termed aneuploidy, cytokinesis failure leads to the formation of a binucleated cell with an entirely duplicated genome, termed tetraploidy. In somatic cells, tetraploidy can either lead to cell cycle arrest and death or cause chromosomal instability (CIN), thereby promoting the proliferation of cells with high tumorigenic potential. Therefore, understanding cytokinesis regulation and the potential causes of cytokinesis failure is key, especially in the context of multicellular embryonic systems, wherein progressive cell size reductions coincide with developmental transitions. Moreover, binucleation is frequently observed in human embryos in fertility clinics, and whether binucleation impacts early divisions remains elusive. To elucidate the consequences of tetraploidy, we used the mouse embryo as a model and employed high-resolution immunofluorescence and live-cell imaging experiments. We found that tetraploidy in mouse embryos causes CIN and aneuploidy by a mechanism distinct from that of somatic cells. Whereas in somatic cells multipolar spindle formation caused by supernumerary centrosomes is the major mechanism by which tetraploidy leads to CIN, in mouse embryos - which are acentriolar – tetraploidy does not lead to multipolar spindle formation. Instead, mouse tetraploid embryos develop CIN due to reduced microtubule turnover and impaired error correction activity, which prevents the timely resolution of kinetochore-microtubule mis-attachments, thereby leading to high levels of chromosome segregation errors. As a follow-up study, we next employed live imaging and immunofluorescence experiments, coupled with micromanipulations of cell size, cell adhesion and protein knockdown approaches to investigate the regulatory mechanisms of cytokinesis. Live imaging experiments and micromanipulations of cytoplasmic volume demonstrated that cell size determines the speed of contractile ring constriction i.e., constriction speed becomes progressively slower as the cells decrease in size. However, this phenomenon takes place only when embryos reach the 16-cell stage, suggesting that an upper limit of constriction speed may exist to restrict the scalability of ring constriction to cell size. In addition to cell size being a powerful determinant of cytokinesis progression, our loss-of-function experiments revealed that the emergence of cell polarity negatively impacts contractile ring assembly and constriction in outer cells at the morula stage. More specifically, we found that polarity limits the recruitment of cytokinesis components specifically to one side of the contractile ring, thereby causing unbalanced furrow ingression and reducing constriction speed in outer cells. We speculate that cell polarity may act as an obstacle for cytokinesis progression and render outer cells to be more susceptible to cytokinesis failure. These studies have revealed a novel mechanism by which tetraploidy leads to chromosomal instability and aneuploidy in embryos, wherein defective kinetochore-microtubule dynamics cause chromosome mis-segregation in a manner independent of multipolar spindle formation. In addition, this work unravelled an unexpected inhibitory role of apical polarity on the cytokinetic machinery that might provide a mechanistic explanation for the high incidences of binucleation in the outer layer of blastocysts. Altogether, these findings contribute to our understanding of the spatiotemporal control of cytokinesis during embryonic development and provide new mechanistic insights into the origins and biological consequences of tetraploidy in preimplantation embryos. The results presented in this thesis have substantial clinical implications, as they provide definitive evidence that tetraploidy generated by cytokinesis failure is deleterious to embryonic development, therefore underlining binucleation as an important embryo selection criterion to be considered during fertility treatments.

Page generated in 0.0831 seconds