• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of the Rab35 GTPase by Rab11FIP1 during cytokinesis, apico-basal polarity and collective cell migration

Iannantuono, Nicholas 07 1900 (has links)
Le trafic vésiculaire joue un rôle crucial dans la sécrétion et l'internalisation des composantes extracellulaires ou membranaires. De plus, il contrôle la distribution spatio-temporelle de nombreuses protéines. En outre, ce processus peut contrôler la livraison de protéines à divers domaines des membranes plasmiques. Mes travaux de recherche se sont centrés sur l'étude des protéines Rab11-Family of Interacting Proteins de classe I (Rab11FIPs), plus précisément de Rab11FIP1 et de sa fonction dans différents processus cellulaires nécessitant le trafic vésiculaire, tels que la mitose, la cytokinèse, l'établissement de la polarité cellulaire et de la migration cellulaire, individuelle ou collective. En effet, ces processus nécessitent un contrôle vésiculaire finement régulé, par exemple, la mitose/cytokinèse nécessite le recrutement de différents complexes protéiques contenant des cargaisons liées aux vésicules. L'établissement de la polarité cellulaire nécessite le tri et la livraison de complexes protéiques à des membranes spécifiques et la migration cellulaire nécessite une polarisation complète de la cellule pour permettre un mouvement directionnel. Mes travaux ont élucidé une voie impliquant Rab11FIP1 et Rab35 dans le contrôle à la fois de la cytokinèse et de l'établissement de la polarité. En effet, alors que d'autres groupes ont publié que Rab35 est essentiel pour l'élimination de l'actine située au pont intercellulaire via le recrutement de MICAL1 et OCRL, j'ai montré que Rab11FIP1 est critique pour maintenir Rab35 dans cette région. De plus, j'ai montré que l'absence de Rab11FIP1 et la mauvaise localisation subséquente de Rab35 peuvent conduire à des phénotypes similaires à ceux observés lors de la dérégulation de l'abscission, tels que la binucléation et le retard de la cytokinèse, qui sont des défauts qui contribuent au développement de cancers. Ces défauts peuvent cependant être rétablies en utilisant de faibles doses de Latrunculin A pour dépolymériser de l'actine. De plus, j'ai montré que Rab11FIP1 et Rab35 semblent avoir des fonctions dans la polarité apico-basale des cellules Caco-2 et MCF-10a. Enfin, j'ai aussi montré que Rab35 est impliquée dans la régulation de la migration collective. En conclusion, mes données établissent Rab11FIP1 et Rab35 comme des régulateurs importants de divers processus cellulaires. Ces résultats constituent un point de départ important pour une étude plus approfondie de l'abscission, de l'établissement de la polarité cellulaire, de la formation du Apical Membrane Initiation Site (AMIS) et de la migration cellulaire collective. Cela aura des implications de grande envergure, car ces cascades de signalisation peuvent avoir un impact sur pratiquement tous les processus cellulaires. / Vesicular trafficking plays a crucial role in the secretion and internalization of extracellular or plasma membrane components. Moreover, it controls the spatiotemporal distribution of many proteins during different processes. Also, it can control the delivery of proteins to various domains of the plasma membranes. With this in mind, my research focused on the Rab11 Family of Interacting Proteins of Class I (Rab11FIPs), more specifically of Rab11FIP1 and its function in different cellular processes that require vesicular trafficking, those being mitosis, cytokinesis, establishment of cell polarity and cellular migration, both single and collective. Indeed, these processes require exquisite vesicular control, for example, mitosis/cytokinesis require the recruitment of different protein complexes containing vesicle-bound cargoes. Cell polarity establishment requires the sorting and delivery of protein complexes and cell migration requires fine-tuned polarization of the entire cell to allow for directional movement. My work has elucidated one such pathway involving Rab11FIP1 and Rab35 in the control of both cytokinesis and the establishment of polarity. Indeed, while others have shown that Rab35 is critical for the removal of actin in the intercellular bridge via recruitment of its cargoes MICAL1 and OCRL, I showed that Rab11FIP1 is vital for maintaining Rab35 in the midbody. In fact, I showed that lack of Rab11FIP1 and subsequent mislocalization of Rab35 can lead to similar phenotypes observed during dysregulated abscission, such as binucleation and cytokinesis delay, which are hallmarks of cancer. These phenotypes however, can be rescued using low doses of an actin depolymerizing drug called Latrunculin A. Furthermore, I showed that both Rab11FIP1 and Rab35 seem to have functions in the establishment of apico-basal polarity of both Caco-2 and MCF-10a. Finally, I showed that Rab35 seems to regulate the collectiveness of migrating cells. Altogether, these data establish Rab11FIP1 and Rab35 as important regulators of various cellular processes. These results will be an important stepping stone for further studies into abscission, establishment of cellular polarity, Apical Membrane Initiation Site (AMIS) formation, and collective cell migration. This will have far reaching implications, as these signaling cascades can impact virtually all cellular processes.
2

Cytokinesis in the mouse preimplantation embryo : mechanism and consequence of failure

Gomes Paim, Lia Mara 01 1900 (has links)
Essentiel au maintien d’un organisme sain, la division cellulaire est un processus biologique composée de deux phases : la mitose et la cytokinèse. Au cours de la mitose, un fuseau mitotique bipolaire est assemblé et les chromosomes s’alignent au niveau de la plaque métaphasique par l’attachement des kinétochores aux microtubules du fuseau. Une fois les chromosomes alignés, les chromatides soeurs sont séparées par les microtubules pendant l'anaphase et sont ségréguées entre les cellules filles. La cytokinèse est initiée peu après le début de l'anaphase, marquant ainsi la fin de la division cellulaire en séparant le cytoplasme en deux nouvelles cellules filles. Une exécution précise de la mitose et de la cytokinèse est essentielle pour le maintien de l'intégrité du génome. L'échec de l'un de ces processus affecte la fidélité génétique. Les erreurs de ségrégation des chromosomes durant la mitose peuvent entraîner un gain ou une perte de chromosomes entiers, appelé aneuploïdie. Tandis que l'échec de la cytokinèse conduit à la formation d'une cellule binucléée avec un génome entièrement dupliqué, appelé tétraploïdie. Dans les cellules somatiques, la tétraploïdie peut conduire à l'arrêt du cycle cellulaire, à la mort cellulaire, ou provoquer une instabilité chromosomique (CIN), favorisant ainsi la prolifération de cellules avec un potentiel tumorigène. Par conséquent, il est essentiel de bien comprendre la régulation et les causes potentielles de l’échec de la cytokinèse en particulier dans le contexte des systèmes multicellulaires comme l’embryon. En effet, dans ces systèmes, la réduction progressives de la taille des cellules coïncident avec les principaux évènements du développement. De plus, la binucléation est fréquemment observée dans les cliniques de fertilité chez les embryons humains. Cependant, l’impact de la binucléation sur les divisions préimplantatoires demeure inexpliqué à ce jour. Afin de déterminer les conséquences de la tétraploïdie, nous avons utilisé l'embryon de souris pour modèle et réalisé des expériences d'immunofluorescence à haute résolution et une imagerie sur cellules vivantes. Nous avons découvert que la tétraploïdie chez les embryons de souris provoque une CIN et l'aneuploïdie par un mécanisme différent de celui des cellules somatiques. Dans les cellules somatiques, la formation des fuseaux multipolaires causée par des centrosomes surnuméraires est le principal mécanisme conduisant à la tétraploïdie et ainsi, à une CIN. En revanche, chez les embryons de souris, qui ne possèdent pas de centrosomes, la tétraploïdie ne conduit pas à la formation des fuseaux multipolaires. Les embryons tétraploïdes de souris développent une CIN en raison d’une réduction du renouvellement des microtubules et d’une altération de l’activité de correction d’erreurs dans l’attachement des kinétochores aux microtubules. Ainsi, une mauvaise correction de l’attachement des kinétochores aux microtubules entraîne des niveaux élevés d'erreurs de ségrégation chromosomique. Dans le cadre d'une étude de suivi, nous avons ensuite utilisé des différentes expériences d'imageries sur des cellules vivantes et d'immunofluorescences. Celles-ci furent couplées à des micromanipulations de la taille des cellules, des techniques modifiant l'adhésion cellulaire et des approches de knock-down des protéines pour étudier les mécanismes de régulation de la cytokinèse. Les expériences d'imageries sur cellules vivantes et les micromanipulations du volume cytoplasmique ont démontré que la taille des cellules détermine la vitesse de constriction de l'anneau contractile, c'est-à-dire que la vitesse de constriction devient progressivement plus lente à mesure que la taille des cellules diminue. Cependant, ce phénomène n'a lieu que lorsque les embryons atteignent le stade de 16 cellules ce qui suggère qu'une limite supérieure de vitesse de constriction peut exister pour restreindre l’augmentation de cette vitesse quand les cellules sont trop grandes. La taille des cellules étant un déterminant de la progression de la cytokinèse, nos expériences de knock-down des protéines ont, de plus, démontré que la formation de la polarité cellulaire a un impact négatif sur l'assemblage et la constriction de l'anneau contractile dans les cellules externes au stade de morula. Plus précisément, nous avons constaté que la polarité limite le recrutement des composants de la cytokinèse spécifiquement d'un côté de l'anneau contractile, provoquant ainsi un déséquilibre de l’ingression du sillon de clivage et réduisant la vitesse de constriction dans les cellules externes. Nous spéculons que la polarité cellulaire agit comme un obstacle à la progression de la cytokinèse, rendant ainsi les cellules externes plus sensibles à un échec de la cytokinèse. Ces études ont démontré un nouveau mécanisme par lequel la tétraploïdie conduit à l’instabilité chromosomique et à l’aneuploïdie chez les embryons. Ainsi un défaut de la dynamique de correction de l’attachement des kinétochores aux microtubules entraîne une mauvaise ségrégation des chromosomes indépendamment à la formation des fuseaux multipolaires. Ce travail a mis en évidence un rôle inhibiteur de la polarité apicale inattendu sur la machinerie cytokinétique. Cette inhibition pourrait fournir une explication mécanistique de l’incidence élevée de la binucléation dans le trophectoderme. Dans l'ensemble, ces résultats contribuent à notre compréhension du contrôle spatio-temporel de la cytokinèse au cours du développement embryonnaire et fournissent de nouvelles informations mécanistiques sur les origines et les conséquences biologiques de la tétraploïdie chez les embryons préimplantatoires. Les résultats présentés dans cette thèse ont des implications cliniques importantes, puisqu’ils fournissent des preuves définitives que la tétraploïdie générée par un échec de la cytokinèse est délétère pour le développement embryonnaire. Ces travaux mettent ainsi en lumière que la binucléation est un critère de sélection embryonnaire important à considérer lors des traitements de fertilité. / Cell division is comprised of mitosis and cytokinesis and is an essential biological process for the maintenance of healthy organisms. During mitosis, a bipolar spindle is assembled, and the chromosomes are aligned at the metaphase plate via the attachment of kinetochores to spindle microtubules. Once chromosome alignment is achieved, the sister chromatids are pulled apart by the microtubules during anaphase and segregated into the nascent daughter cells. Cytokinesis is initiated after anaphase onset and marks the completion of cell division by partitioning the cytoplasm of the dividing cell into two new daughter cells. Successful and timely completion of both mitosis and cytokinesis is key for the maintenance of genome integrity, and failure in either one of these processes affects genetic fidelity. Whereas chromosome segregation errors in mitosis can lead to whole chromosome gains or losses, termed aneuploidy, cytokinesis failure leads to the formation of a binucleated cell with an entirely duplicated genome, termed tetraploidy. In somatic cells, tetraploidy can either lead to cell cycle arrest and death or cause chromosomal instability (CIN), thereby promoting the proliferation of cells with high tumorigenic potential. Therefore, understanding cytokinesis regulation and the potential causes of cytokinesis failure is key, especially in the context of multicellular embryonic systems, wherein progressive cell size reductions coincide with developmental transitions. Moreover, binucleation is frequently observed in human embryos in fertility clinics, and whether binucleation impacts early divisions remains elusive. To elucidate the consequences of tetraploidy, we used the mouse embryo as a model and employed high-resolution immunofluorescence and live-cell imaging experiments. We found that tetraploidy in mouse embryos causes CIN and aneuploidy by a mechanism distinct from that of somatic cells. Whereas in somatic cells multipolar spindle formation caused by supernumerary centrosomes is the major mechanism by which tetraploidy leads to CIN, in mouse embryos - which are acentriolar – tetraploidy does not lead to multipolar spindle formation. Instead, mouse tetraploid embryos develop CIN due to reduced microtubule turnover and impaired error correction activity, which prevents the timely resolution of kinetochore-microtubule mis-attachments, thereby leading to high levels of chromosome segregation errors. As a follow-up study, we next employed live imaging and immunofluorescence experiments, coupled with micromanipulations of cell size, cell adhesion and protein knockdown approaches to investigate the regulatory mechanisms of cytokinesis. Live imaging experiments and micromanipulations of cytoplasmic volume demonstrated that cell size determines the speed of contractile ring constriction i.e., constriction speed becomes progressively slower as the cells decrease in size. However, this phenomenon takes place only when embryos reach the 16-cell stage, suggesting that an upper limit of constriction speed may exist to restrict the scalability of ring constriction to cell size. In addition to cell size being a powerful determinant of cytokinesis progression, our loss-of-function experiments revealed that the emergence of cell polarity negatively impacts contractile ring assembly and constriction in outer cells at the morula stage. More specifically, we found that polarity limits the recruitment of cytokinesis components specifically to one side of the contractile ring, thereby causing unbalanced furrow ingression and reducing constriction speed in outer cells. We speculate that cell polarity may act as an obstacle for cytokinesis progression and render outer cells to be more susceptible to cytokinesis failure. These studies have revealed a novel mechanism by which tetraploidy leads to chromosomal instability and aneuploidy in embryos, wherein defective kinetochore-microtubule dynamics cause chromosome mis-segregation in a manner independent of multipolar spindle formation. In addition, this work unravelled an unexpected inhibitory role of apical polarity on the cytokinetic machinery that might provide a mechanistic explanation for the high incidences of binucleation in the outer layer of blastocysts. Altogether, these findings contribute to our understanding of the spatiotemporal control of cytokinesis during embryonic development and provide new mechanistic insights into the origins and biological consequences of tetraploidy in preimplantation embryos. The results presented in this thesis have substantial clinical implications, as they provide definitive evidence that tetraploidy generated by cytokinesis failure is deleterious to embryonic development, therefore underlining binucleation as an important embryo selection criterion to be considered during fertility treatments.

Page generated in 0.2978 seconds