Spelling suggestions: "subject:"premise plumbing"" "subject:"remise plumbing""
11 |
A Framework for Controlling Opportunistic Pathogens in Premise Plumbing Considerate of Disinfectant Concentration x Time (CT) and Shifts in Microbial Growth PhaseOdimayomi, Tolulope Olufunto 02 January 2025 (has links)
Opportunistic pathogens (OPs) can naturally colonize premise (i.e., building) plumbing and are the leading cause of disease associated with potable water in the U.S. and many other countries. While secondary disinfectant is added by utilities prior to water distribution through pipes, the residual in water at the property line is sometimes insufficient to suppress OP growth. Conditions encountered in premise plumbing can further diminish disinfectant in water after it crosses the property line. This dissertation examines how multiple factors at play in drinking water distribution systems and premise plumbing influence OP growth in order to inform development of rational guidance to reduce incidence of waterborne illness.
Operating an at-scale cross-linked polyethylene (PEX) plumbing system with one water flush per day, influent chloramine always decayed within four hours in stagnant pipes containing mature biofilms, which is 2-3 orders of magnitude faster than in the same water not contacting pipes. Chloramine often followed second order decay kinetics, though decay rate coefficients were highly variable with some taps eventually transitioning from second to first order decay over time or with increasing influent chloramine concentration. The rate of chloramine decay was unexpectedly reduced in the water heater tank compared to room temperature pipes, possibly due to lower surface-area-to-volume ratio and higher temperature within the tank. A complementary glass jar experiment confirmed that, contrary to expectations, chloramine could decay slower at the higher temperature of 37-39°C maintained in the water heater, compared to the cooler 19-30°C typical of the pipes. These findings demonstrate the need for disinfectant decay models specific to conditions encountered in premise plumbing.
Nitrification, a key microbial process that can catalyze chloramine decay, was typically complete within 24 hours after water entered the stagnant pipes. Counterintuitively, the water heater had a relatively lower rate of nitrification along with some detectable denitrification. This work also showed that oxygen, essential for aerobic microbial growth, can permeate through walls of PEX pipe and enter into the water from the atmosphere of the building.
Considering the unique array of conditions that were found to influence the persistence of disinfectants in premise plumbing, a new approach was proposed for managing OP risk, referred to herein as the "CT framework." CT was defined as the integral of the chlorine concentration (C) at a point in the premise plumbing versus water retention time (T). Legionella pneumophila was not detectable in pipes with a CT > 78 mg*min/L over a 24 hour period, which is comparable to reported CT thresholds for 3-log inactivation of biofilm-associated L. pneumophila in batch experiments. There was a tradeoff between control of L. pneumophila and Mycobacterium avium in the water heater, as M. avium increased by >1 log as influent chloramine and CT increased, while L. pneumophila decreased by >1.5 logs. Further research is needed to elucidate the influence of factors such as water storage tank hydrodynamics and sediment on the persistence of different OPs.
Building water retention time was also found to be an overarching variable that governs microbial growth in some circumstances in premise plumbing. Total cell counts and L. pneumophila occurrence mirrored expected trends based on the classic microbial growth curve with phases of lag, exponential growth, stationary growth, and decay. The location in the plumbing system where each phase dominated depended on water retention time, disinfectant level, and temperature. The microbial growth curve considerations add an additional dimension to the CT framework for predicting L. pneumophila growth potential in premise plumbing. Specifically, elevated heat or chloramine, was able to temporarily suppress or even eliminate growth, but the phases of classic microbial growth could be restarted once disinfectant or very high temperatures were absent. Total cell counts and L. pneumophila typically peaked at a building water retention time of 7 days, demonstrating that once a week flushing guidance to protect public health may not be advantageous in all situations.
Collectively, this work offers fundamental and practical insights into factors driving disinfectant decay and microbial proliferation in premise plumbing, offering a modified CT and microbial growth concept framework to help guide the management of OPs in premise plumbing. / Doctor of Philosophy / Access to safe drinking water is fundamental to human health and wellbeing and is considered to be a human right by some agencies. Opportunistic pathogens (OPs) can grow in some drinking water systems and cause deadly diseases, such as Legionnaires' Disease. Legionnaires' Disease and illnesses caused by other OPs are now the leading cause of drinking water-associated disease in the U.S. and many other countries. Chlorine or chloramine are disinfectants required to be present in treated drinking water in the U.S. before it is piped through the distribution systems to consumers. This helps to limit growth of OPs and other microbes in the distribution systems. However, the concentration of disinfectant that remains in water as it crosses the property line is sometimes inadequate to suppress OP growth. Even if the amount of disinfectant entering a building is boosted, there are some plumbing materials and circumstances that can quickly reduce the disinfectant. These challenges are sometimes worsened by water and energy conservation efforts, which extend the time water spends in a building and presents tradeoffs with preventing OP growth. This dissertation examines how multiple factors at play in drinking water distribution systems and building plumbing individually and collectively influence OP growth, with a goal of developing rational guidance to reduce incidence of waterborne illness.
Experiments were conducted using a large at-scale building plumbing system. These experiments revealed new insights into the relationship among factors such as how long the water stagnates in pipes, water temperature, the disinfectant concentration at each tap, and the level of specific OPs of concern. Chloramine was gone within four hours of stagnation in plastic cross-linked polyethylene (PEX) pipes containing a mature biofilm, which is 100-1000× faster than observed in the same water that did not contact pipes. The rate at which chloramine disappeared changed with conditions from tap to tap, or with time at a given tap, in ways that were unexpected based on prior assumptions. Further, the hydraulic characteristics and low temperature of the water heater influenced chloramine decay in the tank in a way that increased survival and release of OPs. We found that other microbes residing in pipes, such as nitrifying microbes, can also play a role in decay of disinfectant and their activity also is controlled by the water retention time and temperature in the system. These findings reinforce the need to thoroughly understand how chemical, biological, and hydraulic factors combine to influence OP growth in buildings.
To account for the array of factors that contribute to the decay of disinfectant, we introduce premise plumbing "CT" as a new integrative framework to guide management of OPs. We define CT as the integral of the disinfectant concentration (C) at a stagnant point in the building plumbing verses the time (T) water has resided at that point, to characterize the ability of the water to kill or suppress growth of bacteria. If the calculated CT values in the at-scale plumbing system were high enough, Legionella pneumophila, the OP that causes Legionnaires' Disease, was never detected in pipes. However, if CT was too low, L. pneumophila was not controlled. Oddly, M. avium, another problematic OP, exhibited a contradictory trend within the water heater. This indicates that the CT concept may not control M. avium in chloraminated water heaters with complex water flow patterns and sediment. Higher chloramine caused lower L. pneumophila and higher M. avium in the water heater, but this tradeoff did not occur in cold water pipes when the room temperature was below that required for OP growth, indicating that room temperature setpoint could be a significant factor for OP control in buildings.
Building water retention time, which is the time that water takes to move through the plumbing before it is consumed from a tap, was identified in this research to be a key driver of microbial growth that can be readily controlled by building managers. Trends of total microbial cell count and L. pneumophila in the premise plumbing system and complementary experiments followed all the phases of growth associated with bacteria in a simple glass jar, including a lag, rise, peak, and then decay of cells. Elevated heat or chloramine was able to temporarily suppress growth or even kill cells, but the phases of growth were again observed once the chemical or thermal disinfectant was removed. In any building, there is likely a frequency of flushing water at a given tap that is "worst case" for bacterial growth. In the absence of disinfectant, bacteria in pipes that are frequently supplied with nutrients through fresh water can be expected to have sustained growth, but if bacteria are starved of nutrients, there is some die off. In our system, total microbial cell counts and L. pneumophila peaked at a water retention time of about one week. Thus, this work suggests that current advice to flush building pipes once a week might sometimes create issues with microbial growth rather than solve them.
Collectively, this research advances both fundamental and practical understanding of the factors driving disinfectant decay and microbial proliferation in premise plumbing. The premise plumbing CT and microbial growth concept framework is introduced to help inform better management of building water systems to prevent or remediate the growth of pathogens and reduce risk of human infection.
|
12 |
Spatial and Temporal Hydraulic Water Quality Models for Predicting Residential Building Water QualityMaria Arantxa Palmegiani (11798894) 07 December 2022 (has links)
<p>Significant seasonal changes in chemical and
microbiological water quality can occur in buildings at different fixture
locations due to temperature and time dependent reaction rates. Here, a series
of calibrated plumbing hydraulic-water quality models were developed for the
extensively monitored Retrofitted Net-zero Energy, Water & Waste (ReNEWW)
house in West Lafayette, Indiana USA. Knowledge gaps that inhibited higher
resolution water quality modeling were also identified. The eight new models
predict the absolute level of free chlorine, total trihalomethanes (TTHM), Cu (Copper),
Fe (Iron), Pb (lead), NO<sub>3</sub><sup> – </sup>(nitrate-nitrogen),
heterotrophic plate count (HPC), and <i>Legionella spp.</i> concentration at
each fixture for plumbing use, operational characteristics, and design layouts of
the plumbing system. Model development revealed that the carrying capacity to
describe Legionella spp. growth (and other organisms) under water usage and
plumbing design conditions is lacking in the literature. This information needed
for higher resolution modeling. Reducing building water use by 25% prompted
increased absolute concentrations of HPC and Legionella, each increasing by a
factor of about 10<sup>5</sup>. When the service line length was increased,
Legionella spp. concentrations increased by up to 10<sup>6 </sup>gene copies /L
in the Summer season. The proposed modeling framework can be used to support
better planning, design, analysis, and operational decision-making.</p>
|
13 |
Forecasting in the Unseeable: A Mixed Methods Model of Planktonic and Biofilm-Bound Legionella pneumophila in Building Water SystemsMraz, Alexis Layman January 2018 (has links)
No description available.
|
14 |
Development of a Two-Stage Computational Modeling Method for Drinking Water Microbial Ecology Effects on Legionella pneumophila GrowthHibler, David A. January 2020 (has links)
No description available.
|
Page generated in 0.0685 seconds