Spelling suggestions: "subject:"ressession d'ablation"" "subject:"prestression d'ablation""
1 |
Génération de très hautes pressions d'ablation laser et de chocs forts pour l'allumage des réactions de fusion nucléaire / High ablation pressure and strong shock generation for nuclear fusionLlor Aisa, Emma 17 February 2017 (has links)
Le schéma d'allumage par choc est une approche prometteuse pour obtenir de l'énergie à grande échelle. Cependant, ce schéma requière des pressions d'ablation laser de l'ordre de 300-400 Mbar pour atteindre l'allumage. L'objectif de cette thèse est de mieux comprendre la physique sous-jacente de la génération de ces pressions très élevées par les mécanismes du transport de l'énergie par les électrons énergétiques dans un régime d'intensité laser entre un et dix petawatt par cm2. Au cours de cette thèse il a été établi un modèle permettant de calculer la pression du choc induit par les électrons chauds et le temps de sa formation pour une distribution en énergie d'électrons et un profil de densité de plasma arbitraire. Nous montrons que la distribution en énergie d'électrons plus étendue conduit à un dépôt en énergie plus homogène ce qui implique un temps de formation du choc plus long et une diminution de la force du choc. Ces conséquences sont à prendre en compte pour le design des cibles pour l'allumage par choc. L'extension de ce modèle au cas d'un plasma inhomogène montre que la couronne de faible densité diminue l'énergie des électrons rapides et donc la quantité d'énergie déposée dans la cible comprimée. Ceci conduit à une réduction du temps nécessaire à la formation du choc, de la pression du choc et de l'efficacité de la conversion de l'énergie des électrons vers l'onde de choc. Ce modèle théorique nous permet d'interpréter l'expérience de la génération d'un choc sphérique sur l'installation laser OMEGA. Grâce à la comparaison des simulations numériques d'un tir représentatif aux résultats expérimentaux nous avons caractérisé la source d'électrons ainsi que la pression et la dynamique du choc. Enfin, nous proposons un design préliminaire de l'expérience sur le rôle des électrons chauds dans la création d'un choc plan sur l'installation LMJ-PETAL. / The Shock Ignition (SI) scheme is a promising approach to obtaining energy on alarge scale. However, this scheme needs ablation pressures in the range of 300-400Mbar to reach ignition. The objective of this thesis is therefore to better understandthe underlying physics of high pressure generation by energetic electrons in a regimeof intensity between one and ten petawatt per cm2. In this thesis, a model hasbeen established for calculating the shock pressure generated by hot electrons andthe time of its formation for an arbitrary electron energy distribution and plasmadensity profile. It is shown that a broader electron energy distribution leads to amore homogeneous energy deposition which implies a longer shock time formationand a reduction of the shock strength. These consequences should be taken intoaccount in shock ignition target design. The extension of this model to the case ofa inhomogeneous plasma shows that the low density corona decreases fast electrons energy and then the amount of energy deposited in the compressed target. This leads to a reduction of the time needed for the shock formation, of the shock pressure and the energy invested in the shock. This theoretical model allows us to interpret the experiment performed in spherical geometry on the OMEGA laser facility. The comparison between numerical simulations and experimental results allow us to characterize the electron source as well as shock pressure and dynamic. Finally, we propose a preliminary design of an experiment to explore the hot electron role in shock generation in planar geometry on the LMJ-PETAL laser facility.
|
2 |
Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion / Modélisation hydrodynamique du schéma d'allumage par choc pour la fusion par confinement inertielVallet, Alexandra 20 November 2014 (has links)
Le schéma d'allumage par choc pour la fusion par confinement inertiel utilise une impulsion laser intense à la fin d'une phase d'assemblage de combustible. Les paramètres clefs de ce schéma sont la génération d'une haute pression d'ablation, l'amplification de la pression du choc généré par un facteur supérieur à cent et le couplage du choc avec le point chaud de la cible. Dans cette thèse, de nouveaux modèles semi-analytiques sont développés afin de décrire le choc d'allumage depuis sa génération jusqu'à l'allumage du combustible. Tout d'abord, un choc sphérique convergent dans le coeur pré-chauffé de la cible est décrit. Le modèle est obtenu par perturbation de la solution auto-semblable de Guderley en tenant compte du nombre de Mach du choc élevé mais fini. La correction d'ordre un tient compte de l'effet de la force du choc. Un critère d'allumage analytique est exprimé en fonction de la densité surfacique du point chaud et de la pression du choc d'allumage. Le seuil d'allumage est plus élevé pour un nombre de Mach faible. Il est montré que la pression minimale du choc, lorsqu'il entre dans le coeur de la cible, est de 20Gbar. La dynamique du choc dans la coquille en implosion est ensuite analysée. Le choc se propage dans un milieu non inertiel avec un fort gradient de pression et une augmentation temporelle générale de la pression. La pression du choc est amplifiée plus encore durant la collision avec une onde de choc divergente provenant de la phase d'assemblage. Les modèles analytiques développés permettent une description de la pression et de la force du choc dans une simulation typique de l'allumage par choc. Il est démontré que, dans le cas d'une cible HiPER, une pression initiale du choc de l'ordre de 300 Mbar dans la zone d'ablation est nécessaire. Il est proposé une analyse des expériences sur la génération de chocs forts avec l'installation laser OMEGA. Il est montré qu'une pression du choc proche de 300Mbar est atteinte près de la zone d'ablation avec une intensité laser absorbée de l'ordre de 2 X 10(15) W.cm-2 et une longueur d'onde de 351 nm. Cette valeur de la pression est deux fois plus importante que la valeur attendue en considérant une absorption collisionnelle de l'énergie laser. Cette importante différence est expliquée par la contribution d'électrons supra-thermiques générés durant l'interaction laser/plasma dans la couronne. Les modèles analytiques proposés permettent une optimisation de l'allumage par choc lorsque les paramètres de la phase d'assemblage, sont pris en compte. Les diverses approches analytiques, numériques et expérimentales sont cohérentes entre-elles. / The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. the key feature of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. in this theses, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical concerging shock wave in a pre-heated hotspot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms >>1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength ans th hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is the analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an averall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytica theory allows to des cribe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is sown that a shock presssure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 x 10(15) W:cm-2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only. That significant pressure enhancement is explained by contribution of hot-electrons generated by non-linear laser/plasma interaction in the corona. The proposed analytical models allow to optimize the shock ignition scheme, including the inuence of the implosion parameters. Analytical, numerical and experimental results are mutualy consistent.
|
Page generated in 0.0864 seconds