Spelling suggestions: "subject:"bpressure boxidation"" "subject:"bpressure deoxidation""
1 |
Alkaline Pressure Oxidation of Pyrite in the Presence of Silica – Characterization of the Passivating FilmDani, Anirudha 22 November 2013 (has links)
Alkaline pressure oxidation, particularly in the presence of trona as additive, can be used to oxidize high carbonate refractory gold ores as it prevents the formation of CO2 in the autoclave. However, the presence of silica in the ore can lead to the encapsulation of pyrite due to the formation of a passive layer. This phenomenon occurs due to the high solubility of silica in alkaline solutions and its subsequent re-precipitation on the reacting pyrite surface. The present study investigated the chemical composition and thickness of the passive layer on a rotating pyrite surface in an aqueous slurry containing silica sand, sodium carbonate and calcium carbonate at 230°C and under 7 bar of oxygen overpressure. Results obtained from XPS and SEM show that a concentration of 2.5 g/L sodium carbonate gave the maximum thickness of passivation on pyrite and that the passive layer consisted primarily of silicates and aluminosilicates.
|
2 |
Alkaline Pressure Oxidation of Pyrite in the Presence of Silica – Characterization of the Passivating FilmDani, Anirudha 22 November 2013 (has links)
Alkaline pressure oxidation, particularly in the presence of trona as additive, can be used to oxidize high carbonate refractory gold ores as it prevents the formation of CO2 in the autoclave. However, the presence of silica in the ore can lead to the encapsulation of pyrite due to the formation of a passive layer. This phenomenon occurs due to the high solubility of silica in alkaline solutions and its subsequent re-precipitation on the reacting pyrite surface. The present study investigated the chemical composition and thickness of the passive layer on a rotating pyrite surface in an aqueous slurry containing silica sand, sodium carbonate and calcium carbonate at 230°C and under 7 bar of oxygen overpressure. Results obtained from XPS and SEM show that a concentration of 2.5 g/L sodium carbonate gave the maximum thickness of passivation on pyrite and that the passive layer consisted primarily of silicates and aluminosilicates.
|
3 |
An Investigation of the Role of Sodium Carbonate and Silica in the Neutral/Alkaline Pressure Oxidation of PyritePeters, Samuel 31 August 2012 (has links)
Pressure oxidation of refractory gold ores containing carbonate minerals is conducted
under neutral/alkaline conditions in order to promote fast kinetics, reduced reagent consumption and suppressing the formation of elemental sulphur and CO2 (which reduces the effectiveness of the process). In this work, both the addition of sodium carbonate and the presence of silica were investigated during the pressure oxidation of pyrite in the presence of calcium carbonate. It was found that the shift to an alkaline leaching environment favours the formation of soluble sulphate products over anhydrite (an industrial scale), but that the increase in kinetics is likely due to an increase in pH and carbonate/bicarbonate concentrations. The presence of silica in the autoclave
induces the formation of an in situ iron oxyhydroxide silicate coating and a significant reduction in pyrite oxidation, which was minimized by addition of sodium carbonate.
|
4 |
An Investigation of the Role of Sodium Carbonate and Silica in the Neutral/Alkaline Pressure Oxidation of PyritePeters, Samuel 31 August 2012 (has links)
Pressure oxidation of refractory gold ores containing carbonate minerals is conducted
under neutral/alkaline conditions in order to promote fast kinetics, reduced reagent consumption and suppressing the formation of elemental sulphur and CO2 (which reduces the effectiveness of the process). In this work, both the addition of sodium carbonate and the presence of silica were investigated during the pressure oxidation of pyrite in the presence of calcium carbonate. It was found that the shift to an alkaline leaching environment favours the formation of soluble sulphate products over anhydrite (an industrial scale), but that the increase in kinetics is likely due to an increase in pH and carbonate/bicarbonate concentrations. The presence of silica in the autoclave
induces the formation of an in situ iron oxyhydroxide silicate coating and a significant reduction in pyrite oxidation, which was minimized by addition of sodium carbonate.
|
5 |
Sulfur dispersing agents for nickel sulfide leaching above the melting point of sulfurTong, Libin 05 1900 (has links)
The effects of sulfur dispersing agents (SDAs) in the oxygen pressure leaching of nickel concentrate at medium temperature were investigated. Liquid sulfur-aqueous solution interfacial tensions and liquid sulfur-sulfide mineral contact angles were measured at 140ºC, 690 kPa overpressure by nitrogen, and 1.0 mol/L NiSO₄. The effects of SDAs including lignosulfonate, Quebracho, o-phenylenediamine (OPD), and humic acid were evaluated by the calculation of the work of adhesion in the liquid sulfur-sulfide mineral-aqueous solution systems. It was found that the sulfide mineral surface is sulfophobic at pH from 4.1 to 4.5 due to the hydrolysis of nickel (II) ions to nickel hydroxide and the deposition of nickel hydroxide on the mineral surface. These findings apply to four different sulfide mineral systems, including pentlandite, nickeliferous pyrrhotite, pyrrhotite, and chalcopyrite. Lignosulfonate, Quebracho, and humic acid were found to significantly reduce the work of adhesion indicating they should be effective SDAs. OPD is ineffective in changing the work of adhesion of sulfur on the mineral sulfides indicating that it is not a good candidate for sulfur dispersion.
The adsorption behavior of SDAs, including lignosulfonate, Quebracho, OPD, and humic acid on elemental sulfur and on nickel sulfide concentrate was investigated. Lignosulfonate, Quebracho, and humic acid were characterized by their infrared spectra. The charge changes on elemental sulfur surface were characterized by the measurement of the electrokinetic sonic amplitude (ESA) in the absence or presence of SDAs. The adsorption of lignosulfonate on molten sulfur surface was calculated by the Gibbs Equation. The adsorption of lignosulfonate, Quebracho, and humic acid on the nickel concentrate was investigated at ambient temperature. The adsorption of lignosulfonate, Quebracho, and humic acid on the nickel concentrate was found to be monolayer adsorption, which was fitted to the Langmuir adsorption isotherm. Electrostatic interaction and ion-binding are the possible mechanisms for the adsorption of lignosulfonate and humic acid on the nickel concentrate. Quebracho is adsorbed on the nickel concentrate through hydroxyl and sulfonate groups. OPD cannot adsorb on the molten sulfur surface. OPD undergoes chemical change in aqueous solution in the presence of ferric at ambient temperature.
Oxygen pressure leaching experiments were performed at 140 or 150ºC under 690 kPa oxygen overpressure. The particle size of the nickel concentrate was found to be an important factor in leaching. During the leaching of nickel concentrate with P₈₀ of 48 µm, the SDAs were believed to be fully degraded before nickel was fully extracted. At most 66% nickel was extracted in the presence of 20 kg/t OPD. Fine grinding (P₈₀ of 10 µm) was sufficient for 99% nickel recovery at low pulp density while at high pulp density, the nickel extraction increased from 95% to 99% with addition of SDAs. Based on the leaching results on a nickel concentrate sample (-44 µm), OPD had the effect of increasing the nickel extraction to about 99%, followed by Quebracho (83%), lignosulfonate (72%), and humic acid (61%). It is suggested that the oxidation product of OPD is effective in solving the sulfur wetting problem in leaching. 97% nickel was recovered in the presence of 5 g/L chloride ion. Chloride ion has an effect to enhance the performance of lignosulfonate under leaching conditions.
|
6 |
Sulfur dispersing agents for nickel sulfide leaching above the melting point of sulfurTong, Libin 05 1900 (has links)
The effects of sulfur dispersing agents (SDAs) in the oxygen pressure leaching of nickel concentrate at medium temperature were investigated. Liquid sulfur-aqueous solution interfacial tensions and liquid sulfur-sulfide mineral contact angles were measured at 140ºC, 690 kPa overpressure by nitrogen, and 1.0 mol/L NiSO₄. The effects of SDAs including lignosulfonate, Quebracho, o-phenylenediamine (OPD), and humic acid were evaluated by the calculation of the work of adhesion in the liquid sulfur-sulfide mineral-aqueous solution systems. It was found that the sulfide mineral surface is sulfophobic at pH from 4.1 to 4.5 due to the hydrolysis of nickel (II) ions to nickel hydroxide and the deposition of nickel hydroxide on the mineral surface. These findings apply to four different sulfide mineral systems, including pentlandite, nickeliferous pyrrhotite, pyrrhotite, and chalcopyrite. Lignosulfonate, Quebracho, and humic acid were found to significantly reduce the work of adhesion indicating they should be effective SDAs. OPD is ineffective in changing the work of adhesion of sulfur on the mineral sulfides indicating that it is not a good candidate for sulfur dispersion.
The adsorption behavior of SDAs, including lignosulfonate, Quebracho, OPD, and humic acid on elemental sulfur and on nickel sulfide concentrate was investigated. Lignosulfonate, Quebracho, and humic acid were characterized by their infrared spectra. The charge changes on elemental sulfur surface were characterized by the measurement of the electrokinetic sonic amplitude (ESA) in the absence or presence of SDAs. The adsorption of lignosulfonate on molten sulfur surface was calculated by the Gibbs Equation. The adsorption of lignosulfonate, Quebracho, and humic acid on the nickel concentrate was investigated at ambient temperature. The adsorption of lignosulfonate, Quebracho, and humic acid on the nickel concentrate was found to be monolayer adsorption, which was fitted to the Langmuir adsorption isotherm. Electrostatic interaction and ion-binding are the possible mechanisms for the adsorption of lignosulfonate and humic acid on the nickel concentrate. Quebracho is adsorbed on the nickel concentrate through hydroxyl and sulfonate groups. OPD cannot adsorb on the molten sulfur surface. OPD undergoes chemical change in aqueous solution in the presence of ferric at ambient temperature.
Oxygen pressure leaching experiments were performed at 140 or 150ºC under 690 kPa oxygen overpressure. The particle size of the nickel concentrate was found to be an important factor in leaching. During the leaching of nickel concentrate with P₈₀ of 48 µm, the SDAs were believed to be fully degraded before nickel was fully extracted. At most 66% nickel was extracted in the presence of 20 kg/t OPD. Fine grinding (P₈₀ of 10 µm) was sufficient for 99% nickel recovery at low pulp density while at high pulp density, the nickel extraction increased from 95% to 99% with addition of SDAs. Based on the leaching results on a nickel concentrate sample (-44 µm), OPD had the effect of increasing the nickel extraction to about 99%, followed by Quebracho (83%), lignosulfonate (72%), and humic acid (61%). It is suggested that the oxidation product of OPD is effective in solving the sulfur wetting problem in leaching. 97% nickel was recovered in the presence of 5 g/L chloride ion. Chloride ion has an effect to enhance the performance of lignosulfonate under leaching conditions.
|
7 |
Sulfur dispersing agents for nickel sulfide leaching above the melting point of sulfurTong, Libin 05 1900 (has links)
The effects of sulfur dispersing agents (SDAs) in the oxygen pressure leaching of nickel concentrate at medium temperature were investigated. Liquid sulfur-aqueous solution interfacial tensions and liquid sulfur-sulfide mineral contact angles were measured at 140ºC, 690 kPa overpressure by nitrogen, and 1.0 mol/L NiSO₄. The effects of SDAs including lignosulfonate, Quebracho, o-phenylenediamine (OPD), and humic acid were evaluated by the calculation of the work of adhesion in the liquid sulfur-sulfide mineral-aqueous solution systems. It was found that the sulfide mineral surface is sulfophobic at pH from 4.1 to 4.5 due to the hydrolysis of nickel (II) ions to nickel hydroxide and the deposition of nickel hydroxide on the mineral surface. These findings apply to four different sulfide mineral systems, including pentlandite, nickeliferous pyrrhotite, pyrrhotite, and chalcopyrite. Lignosulfonate, Quebracho, and humic acid were found to significantly reduce the work of adhesion indicating they should be effective SDAs. OPD is ineffective in changing the work of adhesion of sulfur on the mineral sulfides indicating that it is not a good candidate for sulfur dispersion.
The adsorption behavior of SDAs, including lignosulfonate, Quebracho, OPD, and humic acid on elemental sulfur and on nickel sulfide concentrate was investigated. Lignosulfonate, Quebracho, and humic acid were characterized by their infrared spectra. The charge changes on elemental sulfur surface were characterized by the measurement of the electrokinetic sonic amplitude (ESA) in the absence or presence of SDAs. The adsorption of lignosulfonate on molten sulfur surface was calculated by the Gibbs Equation. The adsorption of lignosulfonate, Quebracho, and humic acid on the nickel concentrate was investigated at ambient temperature. The adsorption of lignosulfonate, Quebracho, and humic acid on the nickel concentrate was found to be monolayer adsorption, which was fitted to the Langmuir adsorption isotherm. Electrostatic interaction and ion-binding are the possible mechanisms for the adsorption of lignosulfonate and humic acid on the nickel concentrate. Quebracho is adsorbed on the nickel concentrate through hydroxyl and sulfonate groups. OPD cannot adsorb on the molten sulfur surface. OPD undergoes chemical change in aqueous solution in the presence of ferric at ambient temperature.
Oxygen pressure leaching experiments were performed at 140 or 150ºC under 690 kPa oxygen overpressure. The particle size of the nickel concentrate was found to be an important factor in leaching. During the leaching of nickel concentrate with P₈₀ of 48 µm, the SDAs were believed to be fully degraded before nickel was fully extracted. At most 66% nickel was extracted in the presence of 20 kg/t OPD. Fine grinding (P₈₀ of 10 µm) was sufficient for 99% nickel recovery at low pulp density while at high pulp density, the nickel extraction increased from 95% to 99% with addition of SDAs. Based on the leaching results on a nickel concentrate sample (-44 µm), OPD had the effect of increasing the nickel extraction to about 99%, followed by Quebracho (83%), lignosulfonate (72%), and humic acid (61%). It is suggested that the oxidation product of OPD is effective in solving the sulfur wetting problem in leaching. 97% nickel was recovered in the presence of 5 g/L chloride ion. Chloride ion has an effect to enhance the performance of lignosulfonate under leaching conditions. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
|
8 |
High-Pressure Oxidation Rates for Large Coal and Char ParticlesMathias, James A. 01 December 1996 (has links)
The main objective of this study was to investigate the factors that influence the oxidation rate of large (five to eight millimeters in diameter) coal and char particles. To accomplish this, experiments were performed in which the gas temperature, gas velocity, particle size, partial pressure of oxygen, and total pressure were varied. The experiments were performed with the cantilever balance attachment and the high pressure controlled profile reactor.
Approximately 90 combustion experiments were performed with Pittsburgh, Utah Blind Canyon, and Wyodak-Anderson coal. These experiments were performed at atmospheric pressure with air and varied gas temperature, gas velocity, and particle size. Following the experiments performed with coal, approximately 70 experiments were performed with char made from Pittsburgh coal. These experiments varied all the environmental conditions mentioned above as well as partial pressure of oxygen and total pressure.
After the experiments were completed, the data were analyzed and the following conclusions were made. An increase in the partial pressure of oxygen dramatically increased the oxidation rate when the total pressure remained constant. The oxidation rate was only slightly affected when the partial pressure of oxygen was raised by increasing the total pressure. The oxidation rate dramatically decreased when the partial pressure of oxygen was held constant and the total pressure was raised. The oxidation rate noticeably increased when the initial mass of the particle was decreased. The gas temperature and gas velocity did not affect the oxidation rate greatly for the experiments performed with coal. The oxidation rate increased for the experiments performed with char at the high gas temperature and high gas velocity conditions.
|
Page generated in 0.0829 seconds