Spelling suggestions: "subject:"bpressure ecovery"" "subject:"bpressure fecovery""
1 |
Performance of Air-Air Ejectors with Multi-ring Entraining DiffusersChen, Qi 14 January 2008 (has links)
This research study considered subsonic short air-air ejectors with multi-ring entraining diffusers.
Many references can be found for the design of air-air ejectors with solid diffusers. However, a limited amount of work has been published specially addressing the performance of short ejectors
with entraining diffusers. This study was an experimental and computational investigation of how ejector performance is affected by ejector geometry (i.e. nozzle, mixing tube and diffuser), flow inlet swirl conditions and flow temperature. Ejector performance was quantified in terms of pumping, pressure recovery, wall temperature and velocity and temperature distribution at the diffuser exit.
The experiments were conducted on one cold flow wind tunnel and one hot gas wind tunnel.
In total, eight ejector systems were tested for this research. Five different swirl conditions and two primary air flow temperatures were studied. Ejector inlet conditions were measured using four fixed 7-hole pressure probes in the annulus. Ejector exit flow conditions were measured using a traversing 7-hole pressure probe with a thermocouple.
A parallel computational study was conducted along with the experimental study. The
commercial CFD packages, Gambit 2.3 and Fluent 6.2, were selected for meshing and flow solutions. The objective of the computational study was to determine the utility of RANS based CFD model for predicting device performance as design changes were implemented. The computational study was intended to provide practitioners with guidance as to when CFD will provide practical answers to specific questions relating to the ejector performance including
ejector pumping, pressure recovery, wall temperatures and velocity and temperature distribution at the diffuser exit.
In total, twenty-six complete cold flow experiments and twenty complete hot flow
experiments have been completed. A detailed CFD model study has been performed to select the suitable computational domain, mesh density, boundary conditions, turbulence model and near wall treatment. Twenty-four CFD cases were selected to compare with the corresponding experimental data.
The experimental results showed that the inlet swirl conditions and the diffuser bent angle had significant effects on the ejector performance. In general, the maximum ejector performance was achieved with the 20° inlet swirl condition. This level of swirl enhanced pressure recovery in the ejector. As the diffuser bent angle increased, the total pumping decreased due to the flow
impingement in the diffuser. The oblong ejector generally had better flow mixing performance than the round ejector.
For the CFD simulations, the Realizable k-ε turbulence model was found to give reasonable
predictions for most of the bulk flow properties such as the total pumping, velocity profiles, swirl levels and back pressure. These were achieved at a reasonable cost in terms of the human efforts
and computational resources. The RSM was able to give slightly improved predictions but at a much higher cost in terms of the efforts and computing resources. All of the turbulence models had difficulty predicting the pressure recovery in the mixing tube and diffuser because of their inability to accurately predict flow separation in the core of the swirling primary flow. As a result of this, the turbulence models considered in this work overpredicted the pumping of the mixing tube and underpredicted the pumping of the entraining diffuser. This unresolved issue with the
CFD models is an important consideration when designing such devices. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2008-01-08 00:26:54.931 / This project has been funded by joint contribution from the National Sciences and
Engineering Research Council of Canada (NSERC), the Department of National Defence (DND)and W.R. Davis Engineering Ltd.
|
2 |
A wind tunnel facility for the evaluation of a land-based gas turbine diffuser-collectorSamal, Nihar Ranjan 16 January 2012 (has links)
A subsonic wind tunnel facility was built and tested as part of a base line test investigating flow within a diffuser-collector. Facility controls allowed the quarter scale model to match both Reynolds number and Mach number. Mass averaged conditions at the diffuser inlet during testing were determined as 1.939 ? 106 for Reynolds number based upon diffuser inlet hydraulic diameter, and 0.418 for Mach number. A flow conditioning section prior to test section contained several interchangeable sections. Flow conditioning components were used to create flow characteristic of that leaving the last stage of a land-based gas turbine. The diffuser-collector subsystem was evaluated through the use of wall static pressure measurements, a variety of probe traverse measurements, and Stereo-PIV. Flow within the collector and diffuser were determined to be heavily dependent upon the collector geometry. PIV measurements showed the development of two large counter rotating vortices within the collector. Each symmetric vortex grew and shifted according to the collector geometry while creating complex regions of flow. Pressure recovery within the diffuser was in range of 0.47 to 0.78, and would drop to 0.52 at the collector exit. The drop in pressure recovery was presumed to be a combination of inefficient diffusion in the collector and losses due to the vortices. The baseline test was found to be successful in terms of facility design, and determining the critical flow phenomena. Further testing and experimentation are necessary to evaluate specific details of the collector geometry's effect upon the pressure recovery and flow development. / Master of Science
|
3 |
Effect of coronary collateral flow on diagnostic parameters: An In vitro studyPeelukhana, Srikara Vishwanath January 2009 (has links)
No description available.
|
4 |
Aerodynamic Optimization of Low Observable Engine Intake Duct / Aerodynamisk Optimering av Dold Intagskanal för FlygplansmotorVimlati, Laszlo January 2022 (has links)
An aerodynamic shape optimization procedure was performed on a low observable engineintake duct. The intake duct was fixed in its throat and aerodynamic interface plane (AIP)sections, while leaving up to 7 design parameters free to deformation in the centroid curveand mid section profile. The optimization setup consisted of an optimizer block implementedin MATLAB, where the NSGA-II optimization algorithm was implemented, and a simulationblock using computational fluid dynamics (CFD). The objective functions for the optimizationprocess were the pressure recovery and the DC60 distortion coefficient in the AIP section.In total, four optimizations with gradually increasing degrees of deformation were conducted.The first optimization process was a validation case, performed on a test duct design, whilethe remaining optimizations were performed using a duct designed by the Swedish DefenceResearch Agency (FOI) as a starting point, for cruise and take-off conditions. The connection of NSGA-II and the CFD setup proved useful, as the distortion was decreasedby up to 52.8% relative the original value while keeping the pressure recovery within 0.06% ofthe original duct. The algorithm was successful in finding an improvement for both consideredoperating conditions, with the largest improvement for the cruise case. In total 975 duct designswere evaluated in the four processes, using a uniform inflow boundary condition on a boundaryextruded one meter from the throat of the intake duct. The importance of the handling of non-converged solutions in the automated optimizationprocess was also pointed out, as an oscillating solution affected the third optimization, therebyrendering that solution useless. / En aerodynamisk formoptimering av en insynsskyddad luftintagskanal för en stridsdrönaregenomfördes genom att koppla den genetiska optimeringsalgoritmen NSGA-II samt CFD i enautomatiserad process. Optimeringens två målfunktioner var att maximera tryckåtervinstenoch minimera flödesdistorsionen på AIP-randen. Luftintagskanalen som användes som basför optimeringen var fixerad vid inlopps- samt AIP-profilerna, medan deformation tilläts imellanliggande delar, styrt av upp till 7 styrparametrar. Den kanal som användes som bas föroptimeringsprocessen togs fram av FOI, Totalförsvarets Forskningsinstitut, i samband med ettNATO-STO projekt för den obemannade stirdsdrönaren MULDICON. Totalt genomfördes fyra optimeringsprocesser, där 975 kanaler evaluerades, varav den förstaoptimeringen skedde på en något modifierad test-kanal som verifikationssteg, medan de senareoptimeringarna skedde på FOI-kanalen. Två optimeringar genomfördes på marschhöjdsförhållanden på 11km höjd, medan resterande optimeringar genomfördes för start-förhållandenpå standard havsnivå. Metoden gav goda resultat, med maximalt 52,8% relativ minskning av flödesdistorsionenmedan tryckåtervinsten bibehölls inom 0.06% av ursprungliga värdet. Det framgick att metodengav störst förbättring för fallet vid marschhöjd, jämfört med originalkanalen. Det påpekades också att den implementerade metoden har begränsningar och är känslig förkraftiga separationer och flödesinstabiliteter, vilket kan skapa oscillationer i lösaren och därmedge falska resultat. Det påverkade den tredje optimeringsprocessen där den optimala lösningenvar okonvergerad, och därmed inte gav verklig förbättring av kanalens prestanda
|
5 |
Projeto conceitual e análise de desempenho do sistema de admissão de ar em uma aeronave não convencional de combate / Conceptual design and performance analysis of the air intake system in a non-conventional fighter aircraftBravo Mosquera, Pedro David 22 May 2017 (has links)
A concepção de aeronaves não convencionais a fim de alcançar um determinado desempenho ou melhoria operacional é sem dúvida um dos objetivos mais importantes da engenheira aeronáutica. Tais melhorias envolvem: redução de arrasto, redução da seção transversal, redução de ruído, redução da distância de decolagem e pouso, aumento da eficiência aerodinâmica, aumento da carga útil, entre outros. Por tanto, métodos de otimização multidisciplinar se tornaram em ferramentas muito úteis para aprimorar o projeto conceitual destas aeronaves. Neste contexto, este trabalho teve como objetivo o desenvolvimento do projeto conceitual de uma aeronave não convencional de combate e a análise de desempenho aerodinâmico do seu sistema de admissão de ar (Intake), tendo como principal característica, estar localizado na parte superior da fuselagem da aeronave (Dorsal Intake). O delineamento conceitual foi desenvolvido através da implementação de metodologias de otimização multidisciplinar de projeto (MDO) na fase de projeto paramétrico, integrando conceitos como: entropia estatística, desdobramento da função qualidade (QFD) e análise de restrições. Além disso, foram usados métodos analíticos e teóricos, ferramentas de desenho assistido por computador (CAD) e simulações da dinâmica dos fluidos computacionais (CFD) para otimizar e obter a configuração final da aeronave. Posteriormente, 5 configurações de asa delta foram selecionadas para avaliar as mudanças de desempenho do dorsal intake sob a influência aerodinâmica das superfícies principais da aeronave (Asa e Fuselagem), em regimes de voo subsônico (Mach = 0.4), transônico (Mach = 0.9) e supersônico (Mach = 1.7; 2) a diversos ângulos de ataque (De α = 10º a α = 30º ). Os resultados encontrados neste trabalho foram avaliados em separado, subsequentemente foram integrados, a fim de obter a nova concepção de aeronave não convencional de combate; a aplicação de MDO permitiu estimar as variáveis de projeto ideais para o desenvolvimento do projeto da aeronave, em relação a sua missão. Em contrapartida, os resultados da integração intake-estrutura mostram que apropriadas características de desempenho e compatibilidade foram mantidas durante as fases de voo subsônicas, para as 5 configurações de asa. No entanto, para velocidades transônicas, a configuração canard apresentou um acréscimo nos níveis de recuperação de pressão total, devido ao fluxo de alta energia na parte superior da fuselagem, o qual é produzido pelo vórtice do canard a moderados ângulos de ataque. Finalmente, para velocidades supersônicas, a asa com dispositivos LEX (Leading Edge Extensions) obteve os melhores níveis de recuperação de pressão total, pois a implementação destes dispositivos apresentou uma montagem mais vantajosa com sua fuselagem para gerar o cone de Mach, aumentando os níveis de recuperação de pressão total e reduzindo a distorção na face do motor. No entanto, para velocidades maiores a Mach = 2, sem importar a configuração de asa, a expansão do escoamento sobre a fuselagem e as asas da aeronave produziu um aumento no número Mach local na entrada do intake, o que reduziu os níveis de desempenho e compatibilidade do mesmo. Em consequência, a posição do intake na parte superior da fuselagem representa uma opção de configuração viável para aeronaves que requerem apenas capacidades de ângulo de ataque razoáveis, tais como aeronaves de caça ar-terra, sendo a asa com dispositivos LEX a geometria que representa melhores qualidades de desempenho na maioria dos 3 regimes de voo avaliados. / The conception of non-conventional aircraft with the aim of achieving a certain performance or operational improvement is undoubtedly, one of the most important objectives of the aeronautical engineering. These improvements involve: drag reduction, cross section reduction, noise reduction, shortening of take-off and landing distance, increase of aerodynamic efficiency, payload increase, among others. Therefore, optimization multidisciplinary methods became in very important tools to upgrade the conceptual design phase of these aircraft. In this context, this work had as aim the development of the conceptual design of a nonconventional fighter aircraft and the aerodynamic performance analysis of its air intake, having as main characteristic to be located at the top of the fuselage (Dorsal Intake). The conceptual design was developed through the implementation of multidisciplinary design optimization (MDO) methods in the parametric design phase, integrating concepts of: statistical entropy, quality function deployment (QFD) and constraint analysis. Besides that, it was used analytical and theoretical methods, computer-aided design (CAD) tools and computational fluid dynamics (CFD) simulations to optimize and obtain the final aircraft configuration. Subsequently, 5 delta wing configurations were selected to evaluate the dorsal intake performance changes under the aerodynamic influence of the main aircraft surfaces (Wings and Fuselage) in subsonic (Mach = 0.4), transonic (Mach = 0.9) and supersonic (Mach = 1.7; 2) flight regimes, at various angles of attack (From α = 10º to α = 30º ). The results found in this work were evaluated separately, later these were integrated, in order to get the new conception of non-conventional fighter aircraft; the MDO application allowed to estimate the ideal design variables for developing the aircraft design, regarding to its mission. On the other hand, the results of the intake-structure integration shown that appropriate performance and compatibility characteristics were maintained during the subsonic flight stages for the 5 wing configurations. However, for transonic velocities, the canard configuration presented an increase in the total pressure recovery levels, due to the high energy flux on the fuselage, which is produced by the canard vortex at moderate angles of attack. Finally, for supersonic velocities, the wing with LEX (Leading Edge Extensions) devices got the best levels of total pressure recovery, because the implementation of these devices presented a more advantageous assembly with its fuselage to generate the Mach cone, increasing the total pressure recovery levels and reducing the distortion at the engine face. However, for velocities higher than Mach = 2, regardless the wing configuration, the flow expansion on the fuselage and the wings produced an increase in the local Mach number in the intake entrance, which reduced the performance and compatibility levels of it. As a consequence, the top mounted intake position represents an option of viable configuration to aircraft that require only reasonable angles of attack capabilities, such as air-to-ground fighter aircraft, being the wing with LEX devices the geometry that represents better performance qualities in the majority of the 3 evaluated flight regimes.
|
6 |
Projeto conceitual e análise de desempenho do sistema de admissão de ar em uma aeronave não convencional de combate / Conceptual design and performance analysis of the air intake system in a non-conventional fighter aircraftPedro David Bravo Mosquera 22 May 2017 (has links)
A concepção de aeronaves não convencionais a fim de alcançar um determinado desempenho ou melhoria operacional é sem dúvida um dos objetivos mais importantes da engenheira aeronáutica. Tais melhorias envolvem: redução de arrasto, redução da seção transversal, redução de ruído, redução da distância de decolagem e pouso, aumento da eficiência aerodinâmica, aumento da carga útil, entre outros. Por tanto, métodos de otimização multidisciplinar se tornaram em ferramentas muito úteis para aprimorar o projeto conceitual destas aeronaves. Neste contexto, este trabalho teve como objetivo o desenvolvimento do projeto conceitual de uma aeronave não convencional de combate e a análise de desempenho aerodinâmico do seu sistema de admissão de ar (Intake), tendo como principal característica, estar localizado na parte superior da fuselagem da aeronave (Dorsal Intake). O delineamento conceitual foi desenvolvido através da implementação de metodologias de otimização multidisciplinar de projeto (MDO) na fase de projeto paramétrico, integrando conceitos como: entropia estatística, desdobramento da função qualidade (QFD) e análise de restrições. Além disso, foram usados métodos analíticos e teóricos, ferramentas de desenho assistido por computador (CAD) e simulações da dinâmica dos fluidos computacionais (CFD) para otimizar e obter a configuração final da aeronave. Posteriormente, 5 configurações de asa delta foram selecionadas para avaliar as mudanças de desempenho do dorsal intake sob a influência aerodinâmica das superfícies principais da aeronave (Asa e Fuselagem), em regimes de voo subsônico (Mach = 0.4), transônico (Mach = 0.9) e supersônico (Mach = 1.7; 2) a diversos ângulos de ataque (De α = 10º a α = 30º ). Os resultados encontrados neste trabalho foram avaliados em separado, subsequentemente foram integrados, a fim de obter a nova concepção de aeronave não convencional de combate; a aplicação de MDO permitiu estimar as variáveis de projeto ideais para o desenvolvimento do projeto da aeronave, em relação a sua missão. Em contrapartida, os resultados da integração intake-estrutura mostram que apropriadas características de desempenho e compatibilidade foram mantidas durante as fases de voo subsônicas, para as 5 configurações de asa. No entanto, para velocidades transônicas, a configuração canard apresentou um acréscimo nos níveis de recuperação de pressão total, devido ao fluxo de alta energia na parte superior da fuselagem, o qual é produzido pelo vórtice do canard a moderados ângulos de ataque. Finalmente, para velocidades supersônicas, a asa com dispositivos LEX (Leading Edge Extensions) obteve os melhores níveis de recuperação de pressão total, pois a implementação destes dispositivos apresentou uma montagem mais vantajosa com sua fuselagem para gerar o cone de Mach, aumentando os níveis de recuperação de pressão total e reduzindo a distorção na face do motor. No entanto, para velocidades maiores a Mach = 2, sem importar a configuração de asa, a expansão do escoamento sobre a fuselagem e as asas da aeronave produziu um aumento no número Mach local na entrada do intake, o que reduziu os níveis de desempenho e compatibilidade do mesmo. Em consequência, a posição do intake na parte superior da fuselagem representa uma opção de configuração viável para aeronaves que requerem apenas capacidades de ângulo de ataque razoáveis, tais como aeronaves de caça ar-terra, sendo a asa com dispositivos LEX a geometria que representa melhores qualidades de desempenho na maioria dos 3 regimes de voo avaliados. / The conception of non-conventional aircraft with the aim of achieving a certain performance or operational improvement is undoubtedly, one of the most important objectives of the aeronautical engineering. These improvements involve: drag reduction, cross section reduction, noise reduction, shortening of take-off and landing distance, increase of aerodynamic efficiency, payload increase, among others. Therefore, optimization multidisciplinary methods became in very important tools to upgrade the conceptual design phase of these aircraft. In this context, this work had as aim the development of the conceptual design of a nonconventional fighter aircraft and the aerodynamic performance analysis of its air intake, having as main characteristic to be located at the top of the fuselage (Dorsal Intake). The conceptual design was developed through the implementation of multidisciplinary design optimization (MDO) methods in the parametric design phase, integrating concepts of: statistical entropy, quality function deployment (QFD) and constraint analysis. Besides that, it was used analytical and theoretical methods, computer-aided design (CAD) tools and computational fluid dynamics (CFD) simulations to optimize and obtain the final aircraft configuration. Subsequently, 5 delta wing configurations were selected to evaluate the dorsal intake performance changes under the aerodynamic influence of the main aircraft surfaces (Wings and Fuselage) in subsonic (Mach = 0.4), transonic (Mach = 0.9) and supersonic (Mach = 1.7; 2) flight regimes, at various angles of attack (From α = 10º to α = 30º ). The results found in this work were evaluated separately, later these were integrated, in order to get the new conception of non-conventional fighter aircraft; the MDO application allowed to estimate the ideal design variables for developing the aircraft design, regarding to its mission. On the other hand, the results of the intake-structure integration shown that appropriate performance and compatibility characteristics were maintained during the subsonic flight stages for the 5 wing configurations. However, for transonic velocities, the canard configuration presented an increase in the total pressure recovery levels, due to the high energy flux on the fuselage, which is produced by the canard vortex at moderate angles of attack. Finally, for supersonic velocities, the wing with LEX (Leading Edge Extensions) devices got the best levels of total pressure recovery, because the implementation of these devices presented a more advantageous assembly with its fuselage to generate the Mach cone, increasing the total pressure recovery levels and reducing the distortion at the engine face. However, for velocities higher than Mach = 2, regardless the wing configuration, the flow expansion on the fuselage and the wings produced an increase in the local Mach number in the intake entrance, which reduced the performance and compatibility levels of it. As a consequence, the top mounted intake position represents an option of viable configuration to aircraft that require only reasonable angles of attack capabilities, such as air-to-ground fighter aircraft, being the wing with LEX devices the geometry that represents better performance qualities in the majority of the 3 evaluated flight regimes.
|
7 |
Návrh sacího kanálu turbínového motoru v provedení NACA vstup / Design of turbine engine inlet in NACA-duct configurationBabinec, Viktor January 2018 (has links)
This master thesis is focused on design and aerodynamic analysis of subsonic turbine engine inlet in NACA duct configuration for unmanned aircraft. The first part of this paper is methodics for design considerations for NACA duct, which is based on theoretical analysis of this type of inlet. The acquired knowledge is used to design an inlet for the specified unmanned aircraft that is subject of CFD analysis. The impact of deflectors is considered in the evaluation and the solution is compared to the S-duct inlet. The proposed inlet with deflectors meets DC60 distortion criterion for all specified cases and the pressure losses requirements are met for lower velocities. Based on the results, the recommended application is for aircraft that flies in optimal design conditions for most of the mission.
|
8 |
Optimalizovaný návrh sacího kanálu turbínového motoru / Optimized design of turbine engine intakeKubo, Michal January 2016 (has links)
This master thesis deals with design of a subsonic intake which is used to supply small jet engine integrate into the fuselage of agile small unmanned aerial vehicle (UAV). Some kinds of these intakes are listed in order to inspire and introduce future designers into this part of jet plane design. This thesis contains a small amount of theory about compressible flow, and necessary knowledge which are important to know before the very first attempt to design an intake. Two models were designed in order to prove that the theory listed in this thesis is useful and can be used as a guide in design process of subsonic intakes. Both designs have the same layout. S-duct design with one intake placed on the belly of fuselage was chosen. After CFD analysis of first model it was found that there are huge area with separated flow and vortex. Separated flow leads to big total pressure loss and pressure distortion. While designing the second model the emphasis was to avoid this vortex and improve flow conditions. This optimization was success and the second design have smaller pressure loss in compare to the first design. The difference is more than 50% at fly speed M=0,8.
|
Page generated in 0.0407 seconds