Spelling suggestions: "subject:"bpressure correction scheme"" "subject:"depressure correction scheme""
1 |
Schémas numériques pour la Simulation des Grandes EchellesDardalhon, Fanny 03 December 2012 (has links)
Cette thèse est consacrée à la simulation d'écoulements turbulents, incompressibles ou à faible nombre de Mach pour des applications touchant à la sûreté nucléaire. En particulier, nous nous concentrons sur le développement et l'analyse mathématique de schémas numériques performants pour la méthode dite de Simulation des Grandes Echelles. Ces schémas sont basés sur des méthodes à pas fractionnaires de type correction de pression et des éléments finis non conformes de bas degré. Deux arguments semblent essentiels à la construction de tels schémas: le contrôle de l'énergie cinétique et la précision pour des écoulements à convection dominante. Concernant la discrétisation en temps, nous proposons un schéma de type Crank-Nicolson et nous montrons qu'il satisfait un contrôle de l'énergie cinétique. Ce schéma présente de plus l'avantage d'être peu dissipatif numériquement (résidu d'ordre deux en temps). Concernant le défaut de précision de la discrétisation par l'élément fini de Rannacher-Turek, nous envisageons deux approches. La première consiste à construire un schéma pénalisé contraignant les degrés de liberté tangents aux faces des cellules à s'écrire comme combinaison linéaire des degrés de liberté normaux alentour. La deuxième approche repose sur l'enrichissement de l'espace discret d'approximation pour la pression. Enfin, différents tests numériques sont présentés en dimensions deux et trois et pour des maillages généraux, afin d'illustrer les capacités des schémas étudiés et de confronter les résultats théoriques et expérimentaux. / This thesis is devoted to the simulation of incompressible or low Mach turbulent flows, for nuclear safety applications. In particular, we focus on the development and analysis of performing numerical schemes for the Large Eddy Simulation technique. These schemes are based on fractional step methods of pressure correction type and on nonconforming low degree finite elements. Two requirements seems essential to build such schemes, namely a control of kinetic energy and the accuracy for convection dominated flows. Concerning the time marching algorithm, we propose a Crank-Nicolson like scheme for which we prove a kinetic energy control. This scheme has the advantage to be numerically low dissipative (numerical dissipation residual is second order in time). Concerning the low accracy of the Rannacher-Turek discretization, two approaches are investigated in this work. The first one consists in building a penalized scheme constraining the velocity degrees of freedom tangent to the faces to be written as a linear combination of the normal ones. The second approach relies on the enrichment of the pressure approximation discrete space. Finally, various numerical tests are presented in both two and three dimensions and for general meshes, to illustrate the capacity of the schemes and compare theoretical and experimental results.
|
2 |
Méthodes de correction de pression pour les équations de Navier-Stokes compressibles / Pressure correction schemes for compressible flowsKheriji, Walid 28 November 2011 (has links)
Cette thèse porte sur le développement de schémas semi-implicites à pas fractionnaires pour les équations de Navier-Stokes compressibles ; ces schémas entrent dans la classe des méthodes de correction de pression.La discrétisation spatiale choisie est de type "à mailles décalées :éléments finis mixtes non conformes (éléments finis de Crouzeix-Raviart ou Rannacher-Turek) ou schéma MAC classique.Une discrétisation en volumes finis décentrée amont du bilan de masse garantit la positivité de la masse volumique.La positivité de l'énergie interne est obtenue en discrétisant le bilan d'énergie interne continu, par une méthode de volumes finis décentrée amont, enfin, et en couplant ce bilan d'énergie interne discret à l'étape de correction de pression.On effectue une discrétisation particulière en volumes finis sur un maillage dual du terme de convection de vitesse dans le bilan de quantité de mouvement et une étape de renormalisation de la pression; ceci permet de garantir le contrôle au cours du temps de l'intégrale de l'énergie totale sur le domaine.L'ensemble de ces estimations a priori implique en outre, par un argument de degré topologique, l'existence d'une solution discrète. L'application de ce schéma aux équations d'Euler pose une difficulté supplémentaire.En effet, l'obtention de vitesses de choc correctes nécessite que le schéma soit consistant avec l'équation de bilan d'énergie totale, propriété que nous obtenons comme suit. Tout d'abord, nous établissons un bilan discret (local) d'énergie cinétique.Ce dernier comporte des termes sources, que nous compensons ensuite dans le bilan d'énergie interne. Les équations d'énergie cinétique et interne sont associées au maillage dual et primal respectivement, et ne peuvent donc être additionnées pour obtenir un bilan d'énergie totale ; cette dernière équation est toutefois retrouvée, sous sa forme continue, à convergence : si nous supposons qu'une suite de solutions discrètes converge lorsque le pas de temps et d'espace tendent vers 0,, nous montrons en effet, en 1D au moins, que la limite en satisfait une forme faible.Ces résultats théoriques sont confortés par des tests numériques.Des résultats similaires sont obtenus pour les équations de Navier-Stokes barotropes. / This thesis is concerned with the development of semi-implicit fractional step schemes, for the compressible Navier-Stokes equations; these schemes are part of the class of the pressure correction methods.The chosen spatial discretization is staggered: non conforming mixed finite elements (Crouzeix-Raviart or Rannacher-Turek) or the classic MAC scheme. An upwind finite volume discretization of the mass balanced guarantees the positivity of the density. The positivity of the internal energy is obtained by discretising the internal energy balance by an upwind finite volume scheme and by coupling the discrete internal energy balance with the pressure correction step.A special finite volume discretization on dual cells is performed for the convection term in the momentum balance equation, along with a renormalization of the pressure; this allows to guarantee the control in time of integral of the total energy over the domain.All these a priori estimates implies lead to the existence of a discrete solution by a topological degree argument.The application of this scheme the equations of Euler yields an additional difficulty.Indeed, obtaining correct shock speeds requires that the scheme be consistent with the total energy balance,, property which we obtain as follows.First of all, a local discrete kinetic energy balance is established; it contains source terms which are compensated by adding some source terms in the internal energy balance. The kinetic and internal energy equations are associated with the dual and primal meshes respectively, and thus cannot be added to obtain a balance total energy balance; its continuous counterpart is however recovered at the limit: if we suppose that a sequence of discrete solutions converges when the space and time steps tend to 0, we indeed show, in 1D at least, that the limit satisfies a weak form of the equation. These theoretical results are comforted by numerical tests.Similar results are obtained for the barotropic Navier--Stokes equations
|
3 |
Numerical modelling of mixing and separating of fluid flows through porous mediaKhokhar, Rahim Bux January 2017 (has links)
In present finite element study, the dynamics of incompressible isothermal flows of Newtonian and two generalised non-Newtonian models through complex mixing-separating planar channel and circular pipe filled with and without porous media, including Darcy's term in momentum equation, is presented. Whilst, in literature this problem is solved only for planar channel flows of Newtonian and viscoelastic fluids. The primary aim of this study is to examine the laminar flow behaviour of Newtonian and inelastic non-Newtonian fluids, and investigate the robustness of the numerical algorithm. The rheological properties of non-Newtonian fluids are defined utilising a range of constitutive equations, for inelastic non-Newtonian fluids non-linear viscous models, such as Power Law and Bird-Carreau models are used to capture the shear thinning behaviour of fluids. To simulate such complex flows, steady-state solutions are sought employing time-dependent finite element algorithm. Temporal derivatives are discretised using second order Taylor series expansion, while, spatial discretisation is achieved through Galerkin approximation in combination to deal with incompressibility a pressure-correction scheme adopted. In order to achieve the algorithm of semi-implicit form Darcy's-Brinkman equation is utilized for the conversion in Darcy's terms and diffusion, while Crank-Nicolson approach is adopted for stability and acceleration. Simple and complex flows for various complex flow bifurcations of the combined mixing-separating geometries, for both two-dimensional planar channel in Cartesian coordinates, as well as axisymmetric circular tube in cylindrical polar coordinates system are investigated. These geometries consist of a two-inverted channel and pipe flows connected through a gap in common partitions, initially filled with non-porous materials and later with homogeneous porous materials. Computational domain is having variety it has been investigated with many configurations. These computational domains have been appeared in industrial applications of combined mixing and separating of fluid flows both for porous and non-porous materials. Fully developed velocity profile is applied on both inlets of the domain by imposing analytical solutions found during current study for porous materials. Numerical study has been conducted by varying flow rates and flow direction due to a variety in the domain. The influence of varying flow rates and flow directions are analysed on flow structure. Also the impact of increasing inertia, permeability and power law index on flow behaviour and pressure difference are investigated. From predicted solution of present numerical study, for Newtonian fluids a close agreement is realised between numerical solutions and experimental data. During simulations, it has been noticed that enhancing fluid inertia (flow rates), and permeability has visible effects on the flow domains. When the Reynolds number value increases the size and power of the vortex for recirculation increases. Under varying flow rates an early activity of vortex development was observed. During change in flow directions reversed flow showed more inertial effects as compared with unidirectional flows. Less significant influence of inertia has been observed in domains filled with porous media as compared with non-porous. The power law model has more effects on inertia and pressure as compared with Bird Carreau model. Change in the value of permeability gave significant impact on pressure difference. Numerical simulations for the domain and fluids flow investigated in this study are encountered in the real life of mixing and separating applications in the industry. Especially this purely quantitative numerical investigation of flows through porous medium will open more avenues for future researchers and scientists.
|
Page generated in 0.1308 seconds