Spelling suggestions: "subject:"compressible navierstokes"" "subject:"compressible avierstokes""
1 |
Asymptotic approximation of fluid flows from the compressible Navier-Stokes equationsWelter, Roland Kuha 31 August 2021 (has links)
In this thesis a method for studying the asymptotic behavior of solutions to dissipative partial differential equations is developed, motivated by the study of the compressible Navier-Stokes equations in the past works of Hoff and Zumbrun,1995, Hoff and Zumbrun, 1997. In its most basic form, this method allows one to compute n^th order approximations in terms of Hermite functions of solutions of the heat equation having n^th order moments. The main advantage is that these approximations can be efficiently computed, and are often given explicitly in terms of elementary functions. It is shown how this method can be extended to increasingly complicated systems, leading the way toward the asymptotic analysis of the compressible Navier-Stokes equations.
A number of challenges must be overcome to apply this method to the compressible Navier-Stokes system. For technical reasons, the analysis is carried out on the divergence and curl of the velocity field, and hence a means of recovering the velocity field from these quantities is established first. The linear part of the evolution is then studied, and an extended version of the artificial viscosity decomposition previously developed (Kawashima, Hoff and Zumbrun1995) is introduced. This decomposition is in terms of the heat and combined heat-wave operators, and hence general estimates on their evolution in weighted L^p spaces are obtained.
A modified compressible Navier-Stokes system is then introduced which captures the dominant behavior of the linear evolution and possesses similar nonlinear terms. Solutions to this modified system are proven to exist in weighted spaces, showing that solutions initially having a certain number of moments possess this same number of moments for all time. An analysis of the asymptotic behavior of the modified compressible Navier-Stokes system is then carried out, and it is shown that the method developed herein extends and unifies the approach of Hoff and Zumbrun with that of Gallay and Wayne, 2002a, Gallay and Wayne, 2002b, where it was originally developed to study the behavior of the incompressible Navier-Stokes equations. The thesis is concluded with a discussion of how the results obtained for the modified compressible Navier-Stokes system pave the way for an analysis of the true compressible Navier-Stokes system, the generalization of this asymptotic analysis to arbitrary order, and with a comparison of this asymptotic analysis to that found in the recent work of Kagei and Okita, 2017.
|
2 |
Numerické modelování proudění stlačitelných tekutin metodou spektrálních elementů / Numerical modelling of compressible flow using spectral element methodJurček, Martin January 2019 (has links)
The development of computational fluid dynamics has given us a very powerful tool for investigation of fluid dynamics. However, in order to maintain the progress, it is necessary to improve the numerical algorithms. Nowadays, the high-order methods based on the discontinuous projection seem to have the largest potential for the future. In the work, we used open-source framework Nektar++, which provides the high-order discretization method. We tested the abilities of the framework for computing the compressible sonic and transonic flow. We successfully obtained simulations of the viscous and inviscid flow. We computed the lift and the drag coefficients and showed that for a higher polynomial order we can obtain the same accuracy with less degrees of freedom and lower computational time. Also, we tested the shock capturing method for the computation of the inviscid transonic flow and confirmed the potential of the high order methods. 1
|
3 |
Numerická simulace transonického proudění mokré páry / Numerical simulation of transonic flow of wet steamNettl, Tomáš January 2016 (has links)
This thesis is concerned on the simulation of wet steam flow using discontinuous Galerkin method. Wet steam flow equations consist of Naviere-Stokes equations for compressible flow and Hill's equations for condensation of water vapor. The first part of this thesis describes the mathematical formulation of wet steam model and the derivation of Hill's equations. The model equations are discretized with the aid of discontinuous Galerkin method and backward difference formula which leads to implicit scheme represented by nonlinear algebraic system. This system is solved using Newton-like method. The derived scheme was implemented in program ADGFEM which is used for solving non-stationary convective-diffusive problems. The numerical results are presented in the last part of this thesis. 1
|
4 |
Approximation numérique et modélisation de l'ablation liquide / Numerical approximation and modelling of liquid ablationPeluchon, Simon 28 November 2017 (has links)
Lors de sa rentrée dans l’atmosphère d’une planète, un engin spatial subit un échauffement important dû aux frottements des gaz atmosphériques sur la paroi. Cette élévation de température conduit à une dégradation physico-chimique du bouclier thermique de l’objet constitué de matériaux composites. Un composite est constitué de divers matériaux qui s’ablatent différemment. Dans cette thèse, nous nous intéressons essentiellement à la fusion d’un matériau durant sa phase de rentrée atmosphérique. Nous sommes donc en présence de trois phases : solide, liquide et gaz. Pour simuler ce phénomène, des méthodes numériques robustes ont été mises au point pour calculer l’écoulement diphasique compressible autour de l’objet. Le couplage entre le solide et l’écoulement fluide a aussi été étudié. Les méthodes numériques développées durant cette thèse sont basées sur une approche volumes finis. Une stratégie de décomposition d’opérateurs est utilisée pour résoudre le modèle diphasique à cinq équations avec les termes de dissipation modélisant l’écoulement fluide. L’idée principale de cette décomposition d’opérateurs est de séparer les phénomènes acoustiques et dissipatifs des phénomènes de transport. Un traitement implicite de l’étape acoustique est réalisé tandis que l’étape de transport est résolue explicitement. Le schéma semi-implicite global est alors très robuste, conservatif et préserve les discontinuités de contact. Les conditions d’interface entre les domaines fluide et solide sont déduites des bilans de masse et d’énergie à la paroi. Le front de fusion est suivi explicitement grâce à une formulation ALE des équations. La robustesse de l’approche et l’apport de la formulation semi-implicite sont finalement démontrés grâce à des expériences numériques mono et bidimensionnelles sur maillages curvilignes mobiles. / During atmospheric re-entry phase, a spacecraft undergoes a sudden increase of the temperature due to the friction of atmospheric gases. This rise drives to a physical-chemical degradation of the thermal protective system of the object made of composite material. A composite is made of several materials with ablates differently. In this thesis, we mainly focus on the melting of an object during its re-entry phase. Therefore there are three phases: solid, liquid and gas phases. In order to simulate this phenomenon, robust numerical methods have been developed to compute a compressible multiphase flow. The coupling strategy between the solid and the fluid have also been studied. Solvers developed in the present work are based on Finite Volume Method. A splitting strategy is used to compute compressible two-phase flows using the five-equation model with viscous and heat conduction effects. The main idea of the splitting is to separate the acoustic and dissipative phenomena from the transport one. An implicit treatment of the acoustic step is performed while the transport step is solved explicitly. The overall scheme resulting from this splitting operator strategy is very robust, conservative, and preserves contact discontinuities. The boundary interface condition between the solid and the multiphase flow is enforced by mass and energy balances at the wall. The melting front is tracked explicitly using an ALE formulation of the equations. The robustness of the approach and the interest of the semi-implicit formulation are demonstrated through numerical simulations in one and two dimensions on moving curvilinear grids.
|
5 |
Mathematical analysis of equations describing the flow of compressible heat conducting fluids / Mathematical analysis of equations describing the flow of compressible heat conducting fluidsAxmann, Šimon January 2016 (has links)
Title: Mathematical analysis of equations describing the flow of compressible heat conducting fluids Author: Šimon Axmann Department: Mathematical Institute of Charles University Supervisor: doc. Mgr. Milan Pokorný, Ph.D., Mathematical Institute of Charles University Abstract: The present thesis is devoted to the mathematical analysis of equa- tions describing the flow of viscous compressible newtonian fluid in various time regimes. In particular, we present existence results for three problems arising as special cases of a general model derived in the introductory part. The first chap- ter deals with time-periodic solutions to the full Navier-Stokes-Fourier system for heat-conducting fluid. The second chapter contains the proof of existence of steady solutions to a system arising from phase field model for two-phase com- pressible fluid. Finally, in the last section we study steady strong solutions to the Navier-Stokes equations under the additional assumption that the fluid is suffi- ciently dense. For each problem a different concept of the solution is considered, on the other hand in all cases an essential role is played by the crucial quantity effective viscous flux. Keywords: compressible Navier-Stokes system; weak solution; entropy variational solution; large data
|
6 |
Simulation numérique de l'ablation liquide / Numerical simulation of liquid ablationLatige, Manuel 04 September 2013 (has links)
Lors de la phase de rentrée atmosphérique d'une sonde spatiale, la paroi du corps est le siège de phénomènes physico-chimiques complexes. Nous nous intéressons dans cette thèse au cas où le matériau solide de l'objet de vol comporte plusieurs constituants s'ablatant de façon différentielle. En particulier, l'un de ces constituants subit un changement de phase donnant lieu à l'apparition d'une phase liquide. Nous sommes en présence de trois phases : solide, liquide et gaz. Les travaux effectués dans cette thèse correspondent au développement de méthodes numériques en 2D capables de modéliser les différentes interfaces en présence ainsi que l'évolution des fluides ou des matériaux séparés par celle-ci. L'enjeu principal de la thèse est de proposer des méthodes et des algorithmes de couplage pour l'écoulement diphasique, la thermique multimatériaux et les changements de phase (fusion et sublimation) / During atmospheric reentry phase of a spacecraft, its body surface is the seat of complex physico-chemical phenomena. We focus in this thesis on the case where the wall of the flying object has several components ablating differentially. In particular, one of those components undergoes a phase change giving the rise to the introduction of a liquid phase. We have three phases in the domain: solid, liquid and gas phases.The work done in this thesis corresponds to the development of 2D numerical methods which can modelize the different interfaces. The main issue of this thesis is to propose methods and algorithms for coupling the two-phase flow, multi-material heat problems and phase changes (melting and sublimation).
|
7 |
Matematická analýza rovnic popisujících pohyb stlačitelných tekutin / Mathematical analysis of fluids in motionMichálek, Martin January 2017 (has links)
The aim of this work is to provide new results of global existence for dif- ferent evolution equations of fluid mechanics. We are in general interested in finding weak solutions without restrictions on the size of initial data. The proofs of existence are based on several different approaches including en- ergy methods, convergence analysis of finite numerical methods and convex integration. All these techniques significantly exploit results of mathematical analysis and other branches of mathematics. 1
|
8 |
Stlačitelné Navier-Stokes-Fourierovy rovnice pro adiabatický koeficient blízko jedničky / Compressible Navier-Stokes-Fourier system for the adiabatic coefficient close to oneSkříšovský, Emil January 2019 (has links)
In the present thesis we study the compressible Navier-Stokes-Fourier sys- tem. This is a system of partial differential equations describing the evolutionary problem for an adiabatic flow of a heat conducting compressible viscous fluid in a bounded domain. Here we consider the problem in two dimensions with zero Dirichlet boundary conditions for velocity. The cold pressure term in the pressure law for the momentum equation is here considered in the form pC(ϱ) ∼ ϱ logα (1+ϱ) for some α > 0, for which we need to work on the scale of Orlicz spaces in order to obtain useful estimates and in those space we formulate the problem weakly and also establish the weak compactness of the solution. The main result of this thesis is Theorem 6.1 where we show the existence of a weak solution with no assumptions on the size of the data and on arbitrary large time intervals. 1
|
9 |
Méthodes numériques de type Volumes Finis sur maillages non structurés pour la résolution de thermique anisotrope et des équations de Navier-Strokes compressibles / Finite Volume methods on unstructured grids for solving anisotropic heat transfer and compressible Navier-Stokes equationsJacq, Pascal 09 July 2014 (has links)
Lors de la rentrée atmosphérique nous sommes amenés à modéliser trois phénomènes physiques différents. Tout d'abord, l'écoulement autour du véhicule entrant dans l'atmosphère est hypersonique,il est caractérisé par la présence d'un choc fort et provoque un fort échauffement du véhicule. Nous modélisons l'écoulement par les équations de Navier-Stokes compressibles et l'échauffement du véhicule au moyen de la thermique anisotrope. De plus le véhicule est protégé par un bouclier thermique siège de réactions chimiques que l'on nomme communément ablation.Dans le premier chapitre de cette thèse nous présentons le schéma numérique de diffusion CCLAD (Cell-Centered LAgrangian Diffusion) que nous utilisons pour résoudre la thermique anisotrope. Nous présentons l'extension en trois dimensions de ce schéma ainsi que sa parallélisation.Nous continuons le manuscrit en abordant l'extension de ce schéma à une équation de diffusion tensorielle. Cette équation est obtenue en supprimant les termes convectifs de l'équation de quantité de mouvement des équations de Navier-Stokes. Nous verrons qu'une pénalisation doit être introduite afin de pouvoir inverser la loi constitutive et ainsi appliquer la méthodologie CCLAD. Nous présentons les propriétés numériques du schéma ainsi obtenu et effectuons des validations numériques.Dans le dernier chapitre, nous présentons un schéma numérique de type Volumes Finis permettant de résoudre les équations de Navier-Stokes sur des maillages non-structurés obtenu en réutilisant les deux schémas de diffusion présentés précédemment. / When studying the problem of atmospheric reentry we need to model three different physical phenomenons. First, the ow around the atmospheric reentry vehicle is hypersonic, it is characterized by the presence of a strong shock which leads to a rapid heating of the vehicle. We model the ow using the compressible Navier-Stokes equations and the heating of the vehicle is modeled with the anisotropic heat transfer equation. Furthermore the vehicle is protected by an heat shield, where thermochemical reactions, commonly named ablation, occurs.In the first chapter of this thesis we introduce the numerical diffusion scheme CCLAD (Cell-Centered LAgrangian Diffusion) that we use to solve the anisotropic heat diffusion. We develop its non trivial extension to three-dimensional geometries and present its parallelization. We continue this thesis by the presentation of the extension of this scheme to tensorial diffusion. This equation is obtained by suppressing the convective terms of the momentum equation of the Navier-Stokes equations. We show that we need to introduce a penalization term in order to be able to invert the constitutive law. The invertibility of the constitutive law allows us to apply the CCLAD methodology to this equation straightforwardly. We present the numerical properties of this scheme and show numerical validations.In the last chapter, we present a Finite Volume scheme on unstructured grids that solves the compressible Navier-Stokes equations. This numerical scheme is mainly obtained by gathering the contributions of the two diffusion schemes we developed in the previous chapters.
|
10 |
Analysis and control of some fluid models with variable density / Analyse et contrôle de certains modèles de fluide à densité variableMitra, Sourav 23 October 2018 (has links)
Dans cette thèse, nous étudions des modèles mathématiques concernant certains problèmes d'écoulement de fluide à densité variable. Le premier chapitre résume l'ensemble de la thèse et se concentre sur les résultats obtenus, la nouveauté et la comparaison avec la littérature existante. Dans le deuxième chapitre, nous étudions la stabilisation locale des équations non homogènes de Navier-Stokes dans un canal 2d autour du flot de Poiseuille. Nous concevons un contrôle feedback de la vitesse qui agit sur l'entrée du domaine de sorte que la vitesse et la densité du fluide soient stabilisées autour du flot de Poiseuille, à condition que la densité initiale soit donnée par une constante additionnée d'une perturbation dont le support se situe loin du bord latéral du canal. Dans le troisième chapitre, nous étudions un système couplant les équations de Navier-Stokes compressibles à une structure élastique située à la frontière du domaine fluide. Nous prouvons l'existence locale de solutions solides pour ce système couplé. Dans le quatrième chapitre, notre objectif est d'étudier la nulle- contrôlabilité d'un problemè d'interaction fluide-structure linéarisé dans un canal bi dimensional. L'écoulement du fluide est ici modélisé par les équations de Navier-Stokes compressibles. En ce qui concerne la structure, nous considérons une poutre de type Euler-Bernoulli amortie située sur une partie du bord. Dans ce chapitre, nous établissons une inégalité d'observabilité pour le problème considéré d'interaction fluid-structure linéarisé qui constitue le premier pas vers la preuve de la nulle contrôlabilité du système. / In this thesis we study mathematical models concerning some fluid flow problems with variable density. The first chapter is a summary of the entire thesis and focuses on the results obtained, novelty and comparison with the existing literature. In the second chapter we study the local stabilization of the non-homogeneous Navier-Stokes equations in a 2d channel around Poiseuille flow. We design a feedback control of the velocity which acts on the inflow boundary of the domain such that both the fluid velocity and density are stabilized around Poiseuille flow provided the initial density is given by a constant added with a perturbation, such that the perturbation is supported away from the lateral boundary of the channel. In the third chapter we prove the local in time existence of strong solutions for a system coupling the compressible Navier-Stokes equations with an elastic structure located at the boundary of the fluid domain. In the fourth chapter our objective is to study the null controllability of a linearized compressible fluid structure interaction problem in a 2d channel where the structure is elastic and located at the fluid boundary. In this chapter we establish an observability inequality for the linearized fluid structure interaction problem under consideration which is the first step towards the direction of proving the null controllability of the system.
|
Page generated in 0.0734 seconds