Spelling suggestions: "subject:"cow each"" "subject:"cow nach""
1 |
Simulation numérique de l'ablation liquide / Numerical simulation of liquid ablationLatige, Manuel 04 September 2013 (has links)
Lors de la phase de rentrée atmosphérique d'une sonde spatiale, la paroi du corps est le siège de phénomènes physico-chimiques complexes. Nous nous intéressons dans cette thèse au cas où le matériau solide de l'objet de vol comporte plusieurs constituants s'ablatant de façon différentielle. En particulier, l'un de ces constituants subit un changement de phase donnant lieu à l'apparition d'une phase liquide. Nous sommes en présence de trois phases : solide, liquide et gaz. Les travaux effectués dans cette thèse correspondent au développement de méthodes numériques en 2D capables de modéliser les différentes interfaces en présence ainsi que l'évolution des fluides ou des matériaux séparés par celle-ci. L'enjeu principal de la thèse est de proposer des méthodes et des algorithmes de couplage pour l'écoulement diphasique, la thermique multimatériaux et les changements de phase (fusion et sublimation) / During atmospheric reentry phase of a spacecraft, its body surface is the seat of complex physico-chemical phenomena. We focus in this thesis on the case where the wall of the flying object has several components ablating differentially. In particular, one of those components undergoes a phase change giving the rise to the introduction of a liquid phase. We have three phases in the domain: solid, liquid and gas phases.The work done in this thesis corresponds to the development of 2D numerical methods which can modelize the different interfaces. The main issue of this thesis is to propose methods and algorithms for coupling the two-phase flow, multi-material heat problems and phase changes (melting and sublimation).
|
2 |
Simulation numérique de l'ablation liquideLatige, Manuel 04 September 2013 (has links) (PDF)
Lors de la phase de rentrée atmosphérique d'une sonde spatiale, la paroi du corps est le siège de phénomènes physico-chimiques complexes. Nous nous intéressons dans cette thèse au cas où le matériau solide de l'objet de vol comporte plusieurs constituants s'ablatant de façon différentielle. En particulier, l'un de ces constituants subit un changement de phase donnant lieu à l'apparition d'une phase liquide. Nous sommes en présence de trois phases : solide, liquide et gaz. Les travaux effectués dans cette thèse correspondent au développement de méthodes numériques en 2D capables de modéliser les différentes interfaces en présence ainsi que l'évolution des fluides ou des matériaux séparés par celle-ci. L'enjeu principal de la thèse est de proposer des méthodes et des algorithmes de couplage pour l'écoulement diphasique, la thermique multimatériaux et les changements de phase (fusion et sublimation)
|
3 |
Un modèle d'interaction fluide-structure en régime compressible faible Mach / A fluid-structure interaction model for low-Mach compressible flowsAltazin, Thomas 07 September 2017 (has links)
L’objectif de cette étude est de modéliser et de simuler numériquement des phénomènes d’interaction fluide-structure dans un cadre compressible pour des écoulements non-visqueux. La modélisation proposée repose sur une formulation monolithique du couplage fluide-structure en considérant une unique équation permettant de résoudre simultanément le mouvement du fluide et du solide. Un terme supplémentaire dans l’équation de quantité de mouvement traduit la présence de l’obstacle dans l’écoulement. La contribution de ce terme de pénalisation est étudiée à travers l’analogie avec une formulation variationnelle et un intérêt est porté à la rigueur physique, mathématique et numérique de l’unification des deux milieux, en particulier à l’interface. L’approche numérique correspond à une méthode à pas fractionnaire, en tout point identique aux méthodes de prédiction correction utilisées en incompressible. Quelques résultats numériques clôturent ce travail et permettent de préciser les conditions d’application de ce modèle d’interaction fluide-structure en régime compressible. / This study deals with the modeling and simulation of fluid-structure interactions in a compressible framework for inviscid flows. A monolithic approach has been chosen for treating the coupling between the fluid and the solid through a single equation that solves the motion of both simultaniously. An additionnal term in the momentum equation allows to take into account the obstacle in the flow. A weak formulation is derived from previous similar works that confirms the unification problem is mathematically well-posed, especially on the interface. The numerical procedure relies on a time-splitting method similar to prediction-correction methods for incompressible flows. Some numerical examples illustrate this work and allows to conclude on the feasibility of this fluid-structure interaction model for compressible flows.
|
4 |
Large eddy simulation of buoyant plumesWorthy, Jude 05 1900 (has links)
A 3d parallel CFD code is written to investigate the characteristics of and differences
between Large Eddy Simulation (LES) models in the context of simulating a thermal
buoyant plume. An efficient multigrid scheme is incorporated to solve the Poisson
equation, resulting from the fractional step, projection method used to solve the Low
Mach Number (LMN) Navier-Stokes equations.
A wide range of LES models are implemented, including a variety of eddy models,
structure models, mixed models and dynamic models, for both the momentum stresses
and the temperature fluxes. Generalised gradient flux models are adapted from their
RANS counterparts, and also tested.
A number of characteristics are observed in the LES models relating to the thermal
plume simulation in particular and turbulence in general. Effects on transition,
dissipation, backscatter, equation balances, intermittency and energy spectra are all
considered, as are the impact of the governing equations, the discretisation scheme,
and the effect of grid coarsening. Also characteristics to particular models are
considered, including the subgrid kinetic energy for the one-equation models, and
constant histories for dynamic models.
The argument that choice of LES model is unimportant is shown to be incorrect as a
general statement, and a recommendation for when the models are best used is given.
|
5 |
Large eddy simulations (LES) of boundary layer flashback in wall-bounded flowsHassanaly, Malik 02 February 2015 (has links)
In the design of high-hydrogen content gas turbines for power generation, flashback of the turbulent flame by propagation through the low velocity boundary layers in the premixing region is an operationally dangerous event. The high reactivity of hydrogen combined with enhanced flammability lim- its (compared to natural gas) promotes flame propagation along low-speed boundary layers adjoining the combustion walls. This work focuses on the simulation of boundary layer flashback using large-eddy simulations (LES). A canonical channel configuration is studied to assess the capabilities of LES and determine the modeling requirements for boundary layer flashback simulations. To extend this work to complex geometries, a new reactive low-Mach number solver has been written in an unstructured code. / text
|
6 |
Large eddy simulation of buoyant plumesWorthy, Jude January 2003 (has links)
A 3D parallel CFD code is written to investigate the characteristics of and differences between Large Eddy Simulation (LES) models in the context of simulating a thermal buoyant plume. An efficient multigrid scheme is incorporated to solve the Poisson equation, resulting from the fractional step, projection method used to solve the Low Mach Number (LMN) Navier-Stokes equations. A wide range of LES models are implemented, including a variety of eddy models, structure models, mixed models and dynamic models, for both the momentum stresses and the temperature fluxes. Generalised gradient flux models are adapted from their RANS counterparts, and also tested. A number of characteristics are observed in the LES models relating to the thermal plume simulation in particular and turbulence in general. Effects on transition, dissipation, backscatter, equation balances, intermittency and energy spectra are all considered, as are the impact of the governing equations, the discretisation scheme, and the effect of grid coarsening. Also characteristics to particular models are considered, including the subgrid kinetic energy for the one-equation models, and constant histories for dynamic models. The argument that choice of LES model is unimportant is shown to be incorrect as a general statement, and a recommendation for when the models are best used is given.
|
7 |
Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion EquationsAlzahrani, Hasnaa H. 26 July 2016 (has links)
A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.
|
8 |
Extensions of High-order Flux Correction Methods to Flows With Source Terms at Low SpeedsThorne, Jonathan L. 01 May 2015 (has links)
A novel high-order finite volume scheme using flux correction methods in conjunction with structured finite difference schemes is extended to low Mach and incompressible flows on strand grids. Flux correction achieves high-order by explicitly canceling low-order truncation error terms in the finite volume cell. The flux correction method is applied in unstructured layers of the strand grid. The layers are then coupled together using a source term containing the derivatives in the strand direction. Proper source term discretization is verified. Strand-direction derivatives are obtained by using summation-by-parts operators for the first and second derivatives. A preconditioner is used to extend the method to low Mach and incompressible flows. We further extend the method to turbulent flows with the Spalart Allmaras model. We verify high-order accuracy via the method of manufactured solutions, method of exact solutions, and physical problems. Results obtained compare well to analytical solutions, numerical studies, and experimental data. It is foreseen that future application in the Naval field will be possible.
|
9 |
Modélisation d'un film liquide cisaillé par un écoulement de gaz par une approche intégrale / Integral modeling of liquid films sheared by a gas flowLavalle, Gianluca 15 December 2014 (has links)
Dans de nombreuses applications aérospatiales, on peut trouver des films liquides cisaillés, c'est-à-dire une fine couche liquide qui ruisselle sur une paroi entrainée par le gaz. Par exemple, une couche de liquide peut se développer sur la voilure des avions, givrer et dégrader les performances. Des vagues peuvent se développer à l'interface liquide-gaz, et l'analyse correcte de ces instabilités devient très importante pour modéliser ce phénomène physique. En effet, la présence d'instabilités modifie les échanges liquide-gaz, notamment les transferts de masse et chaleur. Le but de cette thèse est de développer une technique permettant de coupler la phase gazeuse afin de reproduire les interactions à l'interface. La couche de liquide étant beaucoup plus mince que celle du gaz, une approche intégrale sur l'épaisseur est utilisée pour la modélisation. Enfin, deux cas d'un écoulement diphasique se développant dans une conduite confinée et dans une conduite plus large sont étudiés. les résultats sont ensuite comparés à des autres méthodes de référence, plus coûteuses en temps de calcul. / In many aerospace applications one can find liquid films sheared by a gas flow. In example, these liquid sheets can develop on aircraft wings, freeze and then destroy the aerodynamics performances. Waves can develop at the liquid-gas interface, and the correct analysis of such instabilities becomes very important to model this physical phenomenon. Indeed, instabilities mdify liquid-gas exchanges, such as mass and heat transfers. The aim of the present work consists in developing a technique to couple the liquid phase to the gas phase in order to reproduce the interactions at the interface. Since the liquid layer is much thinner then the gas, anintegral approach is used for modeling. Finally, two cases of a two-phase flow developing in a strictly confined channel and in a large channel are studied. Results are then compared to other reference methods which are more expensive in terms of computational cost.
|
10 |
Modélisation et simulation de la turbulence compressible en milieu diphasique : application aux écoulements cavitants instationnaires / Modeling and simulation of compressible turbulence in two-phase : application to the cavitating unsteady flowDecaix, Jean 11 October 2012 (has links)
La simulation des écoulements cavitants est confrontée à des difficultés de modélisation et de résolution numérique provenant des caractéristiques particulières de ces écoulements : changement de phase, gradient de masse volumique important, variation du nombre de Mach, turbulence diphasique, instationnarités. Dans cette thèse, nous nous sommes appliqués à dériver proprement le modèle de mélange homogène 1-fluide couplé à une modélisation RANS de la turbulence. A partir des termes contenus dans ces équations et de la nature des écoulements cavitants étudiés, plusieurs modèles de turbulence basés sur la notion de viscosité turbulente ont été testés : modèles faiblement non-linéaires (corrections SST et de réalisabilité), ajout des termes de turbulence compressible, application de la correction de Reboud, modèles hybrides RANS/LES (DES, SAS). Ces modèles ont été incorporés dans un code compressible qui fait appel à une résolution implicite en pas de temps dual des équations de conservation avec une technique de pré-conditionnement bas-Mach pour traiter les zones incompressibles. Les simulations 2D et 3D ont porté sur deux géométries de type Venturi caractérisées par la présence d’une poche de cavitation instationnaire due à l’existence d’un jet rentrant liquide/vapeur le long de la paroi. Elles montrent que l’ensemble des modèles sont capables de capturer le jet rentrant. En revanche, la dynamique de la poche varie entre les modèles et le manque de données expérimentales ne permet pas de discriminer les modèles entre eux. Il apparaît à la vue des résultats que les approches avec la correction de Reboud ou les modèles SAS améliorent la simulation des écoulements. / The computation of cavitating flows is a challenging issue due to the characteristics of these flows : phase transition, large density gradient, Mach number variation, interaction between phases and turbulent flow, unsteadiness. In the present study, we performed a derivation of the one-fluid compressible homogenous model coupled with a RANS approach for the turbulent flow. From these equations and the nature of the cavitating flows, several models based on the eddy viscosity assumption have been tested : weakly non-linear models (SST and realisability corrections), compressible turbulence models, hybrid RANS/LES turbulence models (SAS, DES) and the Reboud correction. All the models are implemented in a compressible code, which solves the equations using an implicit dual-time stepping method coupling with a pre-conditionning technique for the incompressible area. 2D and 3D computations are performed on two Venturi geometries characterized by an unsteady cavitation sheet with a liquid/vapor re-entrant jet. All the models are able to capture the re-entrant jet. Nevertheless, the dynamic behaviour differs from one model to another and the lack of experimental data prevents to discriminate the models between them. From the results, the computations with the SAS model and the Reboud correction improve the prediction of the flow.
|
Page generated in 0.0483 seconds