• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3572
  • 1657
  • 509
  • 451
  • 343
  • 272
  • 131
  • 82
  • 67
  • 53
  • 47
  • 47
  • 47
  • 47
  • 47
  • Tagged with
  • 8784
  • 1446
  • 1276
  • 1274
  • 867
  • 597
  • 565
  • 522
  • 478
  • 396
  • 393
  • 359
  • 342
  • 334
  • 309
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Pressure-sensitive Pen Interactions

Ramos, Gonzalo 28 July 2008 (has links)
Pen-based computers bring the promise of tapping into people’s expressiveness with pen and paper and producing a platform that feels familiar while providing new functionalities only possible within an electronic medium. To this day, pen computers’ success is marginal because their interfaces mainly replicate keyboard and mouse ones. Maximizing the potential of pen computers requires redesigning their interfaces so that they are sensitive to the pen’s input modalities and expressiveness. In particular, pressure is an important and expressive, yet underutilized, pen input modality. This dissertation advances our knowledge about pressure-aware, pen-based interactions and how people use these techniques. We systematically explore their design by first investigating how pressure can affect pen interactions. We propose novel techniques that take advantage of the pressure modality of a pen to control, link, and annotate digital video. We then study people’s performance using pressure to navigate through a set of elements and find that they can discriminate a minimum of six different pressure regions. We introduce the concept of Pressure Widgets and suggest visual and interaction properties for their design. We later explore pressure’s use to enhance the adjustment of continuous parameters and propose Zliding, a technique in which users vary pressure to adjust the scale of the parameter space, while sliding their pen to perform parameter manipulations. We study Zliding and find it a viable technique, which is capable of enabling arbitrarily precise parameter adjustments. We finally present a novel interaction technique defined by the concurrent variation in pressure applied while dragging a pen. We study these pressure marks and find that they are a compact, orientation-independent, full interaction phrase that can be 30% faster than a stateof-the-art selection-action interaction phrase. This dissertation also makes a number of key contributions throughout the design and study of novel interaction techniques: -It identifies important design issues for the development of pressure-sensitive, pen operated widgets and interactions, -It provides design guidelines for interaction techniques and interface elements utilizing pressure-enabled input devices, -It presents empirical data on people’s ability to control pressure, and -It charts a visual design space of pressure-sensitive, pen-based interactions.
442

A hydraulic flexible joint robot simulator

Dezfulian, Shahram 28 June 2007 (has links)
The objective of this project was to design and implement an experimental hydraulic system that simulates joint flexibility of a single rigid link flexible joint robot manipulator, with the ability of changing the joint flexibilitys parameters. Such a system could facilitate future control studies of robot manipulators by reducing investigation time and implementation cost of research. It could also be used to test the performance of different strategies to control the movement of flexible joint manipulators.<p>A hydraulic rotary servo motor was used to simulate the action of a flexible joint robot manipulator. It was a challenging task, since the control of angular acceleration was required. <p>A single-rigid-link, elastic-joint robot manipulator was mathematically modeled and implemented using Matlab. Joint flexibility parameters such as stiffness and damping, could be easily changed. This simulation was considered as a function generator to drive the hydraulic flexible joint robot. In this study the desired angular acceleration of the manipulator was used as the input to the hydraulic rotary motor and the objective was to make the hydraulic system follow the desired acceleration in the frequency range specified. The hydraulic system consisted of a servovalve and rotary motor. <p>A hydraulic actuator robot was built and tested. The results indicated that if the input signal had a frequency in the range of 5 to 15 Hz and damping ratio of 0.1, the experimental setup was able to reproduce the input signal with acceptable accuracy. Because of the inherent noise associated with the measurement of acceleration and some severe non-linearities in the rotary motor, control of the experimental test system using classical methods was not as successful as had been anticipated. This was a first stage in a series of studies and the results provide insight for the future application of more sophisticated control schemes.<p>
443

The Stress Analysis of Pressure Vessels by the Finite Element Method

Huang, Cang-Ming 09 August 2011 (has links)
This study used computer aided design software Solid Work to draw four models of pressure vessel, and to analyze the displacement and the stress by the finite element analysis software ANSYS. To carry on the main body of the pressure vessel and find the highest stress of the pressure vessels by finite element analysis. The stress analysis of the pressure vessel main body contains main nozzle, the skirt of the main body ban and the connected control line. And the stress analysis factor includes: the stress distribution situation by seismic force and the displacement change factor of the wind power and the stress distribution condition of the thermal load by expand with heat and contract with cold (normal temperature climb to high temperature). The researcher also discussed the difference of the stress distribution between individual analysis and the overall analysis. The present study used finite element analysis (contain main body, spray nozzle, skirt in view of the overall analysis ban) to carry on the shell individual analysis first, then using the boundary condition of the result displacements regarding connected spray nozzle, the pipeline by the shell analysis again carries on stress analysis of the spray nozzle and the pipeline. Based on the results of stress analysis by the finite element method, the researcher discussed the differences of stresses between overall analysis and the individual analysis results.
444

Dynamics of Wave Breaking at a Coastal Sea Wall

Antoine, Arthur L. 2009 December 1900 (has links)
Structural designs barely consider the dynamic scenario of a well-developed impinging wave hitting the structure. The usual area of focus is on static and stability factors (e.g. drag, inertia, resistive forces related to weight, buoyancy, sliding etc). Even the "Factor of Safety" which is regularly used in designs to account for unknown and/or unforeseen situations which might occur implies a degree of uncertainty about the dynamic scenario of breaking waves in the coastal environment. In the present study the hydrodynamics of a coastal structure-turbulent bore interaction was studied by examination (two-dimensional) of the singular case of a plunging breaking wave forming a well developed turbulent bore which impacted on a model sea wall structure. The turbulent bore impact event was found to display similar characteristics to the impact event of other wave shapes, in particular that of a plunging breaker. Examination of the impact event confirmed the conversion of nearly all horizontal velocity to vertical velocity during the "flip through" event. In accordance with theoretical expectations the location of maximum pressure was found to occur just below the still water level (SWL). Resulting pressure data in the present study consisted of two blunt spikes as opposed to the "church-roof" (high spike) shape seen in other results. The shape of the pressure data was attributed to the following: firstly, to the initial impact of the protruding jet of the breaking wave which causes the first maxima, secondly, to the sensor encountering the bulk of the entrapped air hence causing the drop in pressure between the blunt spikes and lastly, to the inherent hydrostatic pressure combined with the compression of the entrapped air bubbles, by the subsequent forward motion of the water within the wave, which causes the second maxima. The point of maximum pressure was found to always be within the second maxima. Observation of the turbulent bore-structure interaction showed that the consequential maximum pressure was a direct result of the compression of entrapped air by the weight of the water in the wave as it continued forward onto the structure combined with the inherent hydrostatic pressure of the wave. The project was conducted in an attempt to contribute to the vast knowledge of coastal structure-wave interactions and to add to the understanding of the physics and characteristics of breaking waves. Whilst numerous studies and experiments have been carried out on the phenomenon of breaking waves by previous researchers the current project highlights the advent of new equipment and technological advances in existing methods.
445

Permeability prediction and drainage capillary pressure simulation in sandstone reservoirs

Wu, Tao 17 February 2005 (has links)
Knowledge of reservoir porosity, permeability, and capillary pressure is essential to exploration and production of hydrocarbons. Although porosity can be interpreted fairly accurately from well logs, permeability and capillary pressure must be measured from core. Estimating permeability and capillary pressure from well logs would be valuable where cores are unavailable. This study is to correlate permeability with porosity to predict permeability and capillary pressures. Relationships between permeability to porosity can be complicated by diagenetic processes like compaction, cementation, dissolution, and occurrence of clay minerals. These diagenetic alterations can reduce total porosity, and more importantly, reduce effective porosity available for fluid flow. To better predict permeability, effective porosity needs to be estimated. A general equation is proposed to estimate effective porosity. Permeability is predicted from effective porosity by empirical and theoretical equations. A new capillary pressure model is proposed. It is based on previous study, and largely empirical. It is tested with over 200 samples covering a wide range of lithology (clean sandstone, shaly sandstone, and carbonates dominated by intergranular pores). Parameters in this model include: interfacial tension, contact angle, shape factor, porosity, permeability, irreducible water saturation, and displacement pressure. These parameters can be measured from routine core analysis, estimated from well log, and assumed. An empirical equation is proposed to calculate displacement pressure from porosity and permeability. The new capillary-pressure model is applied to evaluate sealing capacity of seals, calculate transition zone thickness and saturation above free water level in reservoirs. Good results are achieved through integration of well log data, production data, core, and geological concepts.
446

Development of the beta-pressure derivative

Hosseinpour-Zoonozi, Nima 25 April 2007 (has links)
The proposed work provides a new definition of the pressure derivative function [that is the β-derivative function, Δp βd(t)], which is defined as the derivative of the logarithm of pressure drop data with respect to the logarithm of time This formulation is based on the "power-law" concept. This is not a trivial definition, but rather a definition that provides a unique characterization of "power-law" flow regimes which are uniquely defined by the Δp βd(t) function [that is a constant Δp βd(t) behavior]. The Δp βd(t) function represents a new application of the traditional pressure derivative function, the "power-law" differentiation method (that is computing the dln(Δp)/dln(t) derivative) provides an accurate and consistent mechanism for computing the primary pressure derivative (that is the Cartesian derivative, dΔp/dt) as well as the "Bourdet" well testing derivative [that is the "semilog" derivative, Δpd(t)=dΔp/dln(t)]. The Cartesian and semilog derivatives can be extracted directly from the power-law derivative (and vice-versa) using the definition given above.
447

Earth pressures and deformations in civil infrastructure in expansive soils

Hong, Gyeong Taek 10 October 2008 (has links)
This dissertation includes the three major parts of the study: volume change, and lateral earth pressure due to suction change in expansive clay soils, and design of civil infrastructure drilled pier, retaining wall and pavement in expansive soils. The volume change model in expansive clay has been refined to reinforce realistic characteristics of swelling and shrinkage behavior of expansive clay soils. Refinements include more realistic design soil suction versus depth profiles and improved characterizations of the effects of soil cracking, overburden stress, and lateral earth pressure. The refined model also includes an algorithm of assigning suctionvolumetric water content curves and diffusivity through the soil. The typical lateral earth pressure distribution during wetting against a stationary wall is proposed. The proposed stationary retaining wall-soil system in expansive soils includes an upper movement active zone and a lower anchor zone. Mohrâ s circles and failure envelopes are used to define the effective horizontal stress and shear failure in an unsaturated soil. The prediction of the horizontal pressures due to suction change in a soil is compared with the in situ measurement of natural horizontal pressures and the measurements from the large scale tests. It is found that agreement between the measured and predicted horizontal pressures is satisfactory. Case studies of axial and bending of the pier are presented with both uniform and non-uniform wetting. The pier case study for axial behavior shows a good agreement with a heave at ground surface and uplift forces. Three case studies for bending behavior of the pier and retaining wall are presented based on suction change. Pavement design program has been refined to extend the design capabilities into both flexible and rigid pavements supported by pavement treatments. The comparative case studies using both current and new methods in pavement design show that the current method criterion of 1-inch is unnecessarily conservative. Furthermore, the current method does not provide a means of anticipating subgrade shrinkage that will result in longitudinal cracking along the edge of the pavement. The design calculations with both methods lead to the conclusion that neither the swelling movement, as in the current method, nor the total movement, as in the new method, is a reliable indicator of likely acceptable pavement performance. Instead, all of these case studies show that it is important to use the predicted history of the present serviceability index and the international roughness index as the proper design guideline for an acceptable treatment of the subgrade of an expansive soil.
448

The Development of Low Temperature Atmospheric Pressure Plasma System and its Applications

Hsu, Wei-jen 12 September 2007 (has links)
In this research, a novel low temperature atmospheric pressure plasma generator is successfully developed. The developed plasma generator can generate uniform plasma discharge under the operating conditions of 5 SLM helium flow rate and 5 Watts RF power. The temperature of the plasma generator can be maintained lower than 75oC after 30 minutes of continuous operation. The low temperature property of the proposed plasma generator is feasible for the high temperature sensitive sample. Modify the polymer surface by using this plasma generator, for example, the polydimethylsiloxane. It is successfully improve the hydrophilic property, and the surface energy changed obviously. The result of ATR-FTIR detection, the variation of functional groups proved the hydrophilic property, too. Being used the plasma generator to the ion source in novel mass spectrometry. Results show that the measured ion intensity generated using the proposed plasma generator increases steadily with the increases power and increases gas flow. This confirms that this plasma generator is a good ion source in mass spectrometry and for developing a Radio Frequency Direct Analysis in Real Time (RF-DART) mass spectrometry. The blown gas signals of the chewed gum, garlic, and tobacco can be detected quickly already. The signals of the volatile compounds in the solid Chinese herbs samples can be acquired, too. Mass-spectrometer detection results reveal that the developed low-temperature AP plasma generator can directly detect the sample peaks of various samples without using complicate sample preparation processes. More importantly, this proposed analysis method will not cause the memory effect which may influence the signal peaks while analyzing sequence samples during MS operation. Keywords: Low temperature atmospheric pressure plasma; Radio Frequency Direct Analysis in Real Time(RF-DART); Mass spectrometry; Memory effect.
449

Acoustic characteristics of fine powders in fluidized beds /

Herrera C., Carlos A., January 2000 (has links)
Thesis (Ph. D.)--Lehigh University, 2000. / Includes vita. Includes bibliographical references (leaves 160-165).
450

Hydrodynamics of HCP with slopes and bends /

Gao, Xiang, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 256-260). Also available on the Internet.

Page generated in 0.0476 seconds