• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3582
  • 1659
  • 509
  • 451
  • 343
  • 272
  • 131
  • 82
  • 67
  • 53
  • 47
  • 47
  • 47
  • 47
  • 47
  • Tagged with
  • 8797
  • 1448
  • 1279
  • 1276
  • 868
  • 599
  • 565
  • 522
  • 479
  • 396
  • 394
  • 359
  • 342
  • 335
  • 309
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Single-phase flow and flow boiling of water in horizontal rectangular microchannels

Mirmanto January 2013 (has links)
The current study is part of a long term experimental project devoted to investigating single-phase flow pressure drop and heat transfer, flow boiling pressure drop and heat transfer, flow boiling instability and flow visualization of de-ionized water flow in microchannels. The experimental facility was first designed and constructed by S. Gedupudi (2009) and in the present study; the experimental facility was upgraded by changing the piping and pre-heaters so as to accommodate the objectives of the research. These objectives include (i) modifying the test rig, to be used for conducting experiments in microchannels in single and two-phase flow boiling heat transfer, pressure drop and visualization, (ii) redesign metallic single microchannels using copper as the material. The purpose of the redesign is to provide microchannels with strong heaters, high insulation performance and with test sections easy to dismantle and reassemble, (iii) obtaining the effect of hydraulic diameter on single-phase flow, flow pattern, heat transfer and pressure drop, (iv) studying the effects of heat flux, mass flux,and vapour quality on flow pattern, flow boiling heat transfer and pressure drop, (v)comparing experimental results with existing correlations. However, the main focus in this present study is to investigate the effects of hydraulic diameter, heat flux, mass flux and vapour quality on flow pattern, flow boiling heat transfer coefficient and pressure drop. In addressing (iii) many possible reasons exist for the discrepancies between published results and conventional theory and for the scatter of data in published flow boiling heat transfer results: 1. Accuracy in measuring the dimensions of the test section, namely the width, depth and length and in the tested variables of temperature, pressure, heat flux and mass flux. 2. Variations in hydraulic diameter and geometry between different studies. 3. Differences in working fluids. 4. Effects of hydrodynamic and thermal flow development 5. Inner surface characteristics of the channels. Three different hydraulic diameters of copper microchannels were investigated: 0.438mm, 0.561 mm and 0.635 mm. For single-phase flow the experimental conditions included mass fluxes ranging from 278 – 5163 kg/m2 s, heat fluxes from 0 - 537 kW/m², and inlet temperatures of 30, 60 and 90°C. In the flow boiling experiments the conditions comprised of an inlet pressure of 125 kPa (abs), inlet temperature of 98°C (inlet sub-cooling of 7 K), mass fluxes ranging from 200 to 1100 kg/m²s, heat fluxes ranging from 0 to 793 kW/m² and qualities up to 0.41. All measurements were recorded after the system attained steady states. The single-phase fluid flow results showed that no deviation of friction factors was found from the three different hydraulic diameters. The effect of fluid temperature on friction factor was insignificant and the friction factors themselves were in reasonable agreement with developing flow theory. The typical flow patterns observed in all three test sections were bubbly, slug/confined churn and annular, however, based on the observation performed near the outlet, the bubbly flow was not detected. The effects of mass flow and hydraulic diameter on flow pattern for the three test sections investigated in the range of experimental conditions were not clear. The single-phase heat transfer results demonstrated that smaller test sections result in higher heat transfer coefficients. However, for heat transfer trends presented in the form of Nusselt number versus Reynolds number, the effect of hydraulic diameter was insignificant.The flow boiling experiments gave similar heat transfer results; they exhibited that the smaller hydraulic diameter channels resulted in higher heat transfer coefficients. The nucleate boiling mechanism was found for all three test sections, evidenced by the significant effect of heat flux on the local heat transfer coefficient. Moreover, the heat flux had a clear effect on average heat transfer coefficient for the 0.561 mm and 0.635mm test sections, whilst for the 0.438 mm test section, there was no discernible effect. At the same heat flux, increases in mass flux caused heat transfer coefficients to decrease. This could be due to the decrease of pressure inside the test section. When a higher mass flux was tested, the inlet pressure increased, and in reducing the inlet pressure to the original value, a decrease in system pressure resulted. Consequently, the outlet pressure and local pressure became lower. Existing flow pattern maps, flow boiling heat transfer and pressure drop correlations were compared with the experimental results obtained for all three test sections. The comparison showed that the flow pattern map proposed by Sobierska et al. (2006) was the most successful in predicting the experimental data. The local heat transfer coefficient data were compared with existing published correlations. The correlations of Yu et al. (2002), Qu and Mudawar (2003) and Li and Wu (2010) are found to predict the current local heat transfer coefficient better than other correlations tested. Pressure drop results showed that as the heat flux and mass flux were increased, the two-phase pressure drop increased too. These were due to the increase in bubble generations and the inertia momentum effect. As the channel was reduced, the twophase pressure drop increased because the pressure drop related inversely with the channel hydraulic diameter. The pressure and pressure drop fluctuations were indentified in this project, however, the maximum pressure fluctuation was found in the 0.438 mm channel whilst the minimum fluctuation was attained in the 0.561 mm channel. This indicated that the effect of decreasing in hydraulic diameter on pressure and pressure drop fluctuations is not clear and needs to be investigated further. The two-phase pressure drop data were compared with selected correlations. The Mishima and Hibiki (1996)’s correlation was found to predict the current two-phase pressure drop better than the other correlations examined in this study.
602

Redesign : of a medical pressure watch / Nydesign : av en medicinsk tryckvakt

Johansson, Andreas January 2016 (has links)
The pressure watch is a part of the medical central gas system. With an old design the company has asked for an overhaul and a few conceptual designs. The report follows an abductive methodized design process to gain knowledge how the products work, compare it with competitors and then find solutions for new designs.
603

Pressure balance in the Martian ionosphere - Solar Wind interaction

Xystouris, George January 2015 (has links)
Mars is the fourth planet from the Sun and its interaction with the solar wind is a quite interesting subject tostudy. While it is a rocky planet it doesn't have an intrinsic magnetic eld, but an ionosphere, created by thephotoionization of a relatively thin atmosphere. In addition there are magnetic "patches" on its surface, remnantsof an ancient fossilized magnetic eld. All these factors make the study of its interaction with the solar wind quiteintriguing. In this work we tried to extract information about the electron population and the magnetic eld intensity aroundthe planet, but also about the corresponding pressures to those magnitudes: electron -thermal- and magneticpressure respectively. Also, we tried to determine the position of the magnetic pileup boundary (MPB) andcompare it to the theoretical one, and lastly, we search for any possible structures along the MPB -both aboveand below it- by analyzing the ratio of the above mentioned pressures.We used data collected by Mars AdvancedRadar for Subsurface andIonosphereSounding (MARSIS), in a period of almost 9 years - December 2005 to May2014.
604

The thermal response of a pressurised storage vessel and its contents to simulated jet fire impingement

Lacy, Clive B. January 1997 (has links)
The storage of pressure liquefied gas in vessels is subject to various regulations and codes of practice. For example, Liquefied Petroleum Gas (LPG), a commercially relevant product, is subject to Health and Safety Executive Guidelines regarding cylinder/tank arrangements and spacing. In the event of an incident involving fire, the internal pressure and shell temperature of an LPG vessel will rise, and the weakening of steel at elevated temperatures can result in the structural failure of the shell. This can be avoided by the fitting of pressure relief valves, which vent material at a pre-set pressure. However, an ignited release can create a high velocity jet flame which, because of significant radiative and convective components, can generate intense, localised heat loads on neighbouring vessels or pipe-work. However, existing codes of practice have no special provision for the possibility of jet fire incidents. Owing to a lack of detailed information on the thermal response of a LPG vessel exposed to jet flame impingement, a series of laboratory scale tests with simulated, localised jet fire impingement on the exterior shell of a pressure vessel was required. The thermal response and the effects of key parameters, Le. fill level, magnitude of heated zone (Le. size and intensity) and position of simulated impingement, could then be examined for the part-validation of a suitable computer model. In addition, these studies could be used to interpret the results from concurrent full scale jet fire impingement trials. An appropriate pressure vessel was constructed to standard design codes, which incorporated a vent line and dump tank. A suitable LPG substitute was selected. Results from the studies indicated that mixing, and therefore thermal stratification, was highly dependent on the size of the heated zone and its position in relation to the liquid/vapour interface. High Speed Micro-Cinematography was successfully employed to film individual bubble streams within the vessel and to measure individual bubble sizes and velocities for various experimental configurations. Studies were also made on the venting characteristics. Sudden pressure relief caused severe agitation of the liquid phase and the breakdown of thermal stratification. In addition, swelling and aerosol generation through homogenous boiling within the liquid phase was observed. Comparisons with the nodal computer model revealed that the use of only single vapour and liquid nodes was a poor approximation to the detail observed in the small scale studies, where the incident heat flux was relatively low and the simulated region of impingement was highly localised. However, the bulk liquid and vapour temperatures and the pressure response up to the time of venting was generally well predicted. As the degree of engulfment increased the model became a better approximation. Although the full scale trials employed an almost fully engulfing jet flame rather than point source impingement, comparisons have allowed understanding of the liquid and vapour thermal gradients, and the subsequent breakdown of these during venting.
605

Pulse transit time and the pulse wave contour as measured by photoplethysmography : the effect of drugs and exercise

Payne, Rupert Alistair January 2009 (has links)
Photoplethysmography (PPG) is a simple means of measuring the pulse wave in humans, exploitable for the purposes of timing the arrival of the pulse at a particular point in the arterial tree, and for pulse contour analysis. This thesis describes a methodology for measuring arterial pulse transit time (PTT) from cardiac ejection to pulse arrival at the finger. It describes the effect on PTT of drug and exercise induced changes in BP. The nature of the relationship between the PPG and arterial pressure is also examined, and the PTT technique extended to assessment of conduit vessel pulse wave velocity (PWV) during exercise. PTT measured from ECG R-wave to PPG finger wave (rPTT) had a negative correlation (R2=0.39) with systolic BP (SBP), unaffected by vasoactive drugs in some but not all persons. rPTT showed similar beat-to-beat variability to SBP, unaffected by drugs. rPTT correlated weakly with diastolic (DBP) and mean (MAP) pressure. Cardiac pre-ejection period (PEP) formed a substantial and variable part of rPTT (12% to 35%). Transit time adjusted for PEP (pPTT) correlated better with DBP (R2=0.41) and MAP (R2=0.45), than with SBP. The PPG wave tracked changes in the peripheral pressure wave. Drugs had little effect on the generalised transfer function (GTF) describing the association between arterial and PPG waves. Strenuous exercise induced a large decrease in rPTT, mainly accounted for by decreases in PEP (53% of the total change in rPTT) and in transit time from aorta to distal brachial artery (33%). In contrast, minimal change in transit time from wrist to finger tip occurred with exercise. Simultaneous ear-finger PPG signals were used to measure conduit artery PWV during exercise. Ear-finger PWV (PWVef) overestimated carotid-radial PWV throughout exertion (overall bias 0.81±1.05ms-1, p<0.001), but the degree of difference remained constant. The increase in PWVef with exercise, was greater (1.18±0.54ms-1, p=0.035) in healthy subjects with a positive cardiovascular family history compared to those without. PPG enables analysis of the pulse contour during exercise, but estimation of the radial pressure wave from finger PPG by use of a GTF derived at rest, resulted in inaccuracy following exertion. These effects were variable and relatively short-lived. Furthermore, a resting GTF used to determine central pressure from the peripheral wave, resulted in underestimation of SBP (-5.9±2.1mmHg) and central pressure augmentation index (-8.3±2.9%), which persisted for 10 minutes post-exercise. rPTT had a negative linear association with SBP (R2=0.94) during strenuous exercise, slightly stronger than during recovery (R2=0.85). Differences existed in area-undercurve of the rPTT/SBP relationship between exercise and recovery, due to discrepancies in rate and degree of recovery of SBP and PEP. The linear relationship between the rPTT/SBP during exercise was affected by aerobic capacity, and the regression slope was less in the anaerobic compared to aerobic phase of exercise due to minimal change in PEP during anaerobic exertion. The correlation between rPTT/SBP did not change with prolonged aerobic exercise. Finally, measures of baroreflex sensitivity during exercise, were not significantly different between actual beat-to-beat SBP and SBP estimated using rPTT. In conclusion, absolute BP cannot be reliably estimated by measurement of rPTT following administration of drugs and during exercise. However, rPTT may have a role in measuring BP variability and in the assessing exercise capacity. PPG may also be useful in determining the effects of exercise on arterial stiffness, and for estimating the pressure wave contour, although its use during exercise for the latter purpose must be treated with caution.
606

Investigations on the effects of three sulfonamides on thyroid function and blood pressure in male rats

Reed, Alfonzo 01 August 1964 (has links)
Effects of sulfadiazine, sulfathiazole, and sulfapyridine on the thyroid gland and blood pressure were investigated in the rat. Thiouracil, a known potent anti-thyroid substance, was employed as a standard with which the drugs were compared. Four groups of young male albino rats were injected with graded doses of thiouracil, sulfadiazine, sulfathiazole, and sulfapyridine, suspended in distilled water, over a '6-dsy period, respectively. A 0.027' solution of the drug was incorporated into the drinking water daily. A control group was injected with physiological saline and a 0.02" solution of the saline solution was incorporated into the drinking water. Thiouracil and the sulfenamiaes acted as anti-thyroid agents. Goiterous conditions developed, including thyroid hypertrophy, reduced food intake, as well as an increase in body weight concomitantly with reduced oxygen consumption and reduction in the level of iodinated compounds in the blood. A slight increase in the systolic blood pressure was also noted. Results were obtained by means of spectrophotometry, oxygen consumption rates, blood pressure determinations, and gross analyses of the thyroid glands.
607

Hypertension, Infection and Inflammation and their Effects on Memory and Visuospatial Skills in Ageing

Colledge, Alexander January 2016 (has links)
Blood pressure has previously been associated with decline in memory over time, though the exact mechanism behind this effect is uncertain. Infections, which can lead to systemic inflammation have also been linked to some cardiovascular damage to the brain, known as microbleeds, which have themselves been linked to greater declines in cognition in old age. The present study investigates whether blood pressure, a self-reported history of infection, and an indirect measure of inflammation known as the erythrocyte sedimentation rate have any association with on episodic and semantic memory and visuospatial skills in the Betula study, a Swedish longitudinal population study. The effect of elevated blood pressure (over 140 mm Hg systolic and/or 90 mm Hg diastolic), high blood sedimentation (top 33% against bottom 33% of participants), and self-reported infection were all found to not have any significant effect on episodic memory, semantic memory or visuospatial skills. Some of the possible explanations are elaborated in the discussion. / Högt blodtryck har associerats med minnesnedsättning men den exakta mekanismen hur ett samband kan förstås är dock oklar. Infektioner har visat sig ge systematiska inflammationer och har också satts i samband med vissa kardiovaskulära förändringar i hjärnan, så kallade mikroblödningar, vilka i sig har associerats med ökad risk för kognitive nedsättning i hög ålder. Denna uppsats syftar till att undersöka om blodtryck och infektion (självrapporterad infektion samt infektion indirekt mätt genom sänkereaktion) kan relateras till episodiskt och semantisk minne samt visuospatial förmåga i Betula studien, som är en svensk longitudinell populationsbaserad studie. Resultatet visade att varken högt blodtryck (över 140 mm Hg systoliskt eller 90 mm Hg diastoliskt), hög sänkereaktion (de 33 % med högst värde jämfört med de 33 % med lägst värde) eller självrapporterad infektion hade någon signifikant effekt för episodiskt minne, semantiskt minne eller visuospatial förmåga. Några möjliga förklaringar till detta resultat utvecklas i diskussionen. / The Betula Study
608

THE EFFECTS OF ICED WATER INGESTION ON HEART RATE, ELECTROCARDIOGRAM, AND BLOOD PRESSURE

Kerr, Kathryn Lea, 1953- January 1987 (has links)
No description available.
609

PNIPAM hydrogel micro/nanostructures for bulk fluid and droplet control

Silva, James Emanuel 07 January 2016 (has links)
Poly(N-isopropylacrylamide) (PNIPAM) belongs to a class of stimuli-responsive materials known as “smart” polymers. When cast in the form of a hydrogel, PNIPAM’s lower critical solution temperature (LCST) of 32°C serves as a threshold for volumetric change. For solution temperatures below LCST, PNIPAM hydrogels exist as swollen, hydrophilic networks of polymer and water, spontaneously expelling the bound water molecules to shrink (and become increasingly hydrophobic) as temperature increases beyond LCST. This thesis centers on PNIPAM hydrogel layers grafted along the inner diameter of glass capillaries in order to form a temperature-responsive gating mechanism that spontaneously seals for solution temperatures below LCST. Surprisingly, very thin layers (10-20µm) of PNIPAM have dramatic effects on bulk fluid flow through the capillary due to complex interactions at the swelling interface. Specifically, for the case of capillary pressure driven flow, the swelling PNIPAM interface gives rise to "stick-and-slip" motion for bulk flow. Experiments explore the extent of this phenomenon, while a theoretical framework is proposed to model how the evolving gel interface pins the contact line. Additionally, an exploratory segment of this work examines the ways in which PNIPAM hydrogel nanoarrays can be synthesized via scalable template methods. Nanostructured PNIPAM films exhibit dramatic changes in surface properties with temperature, characterized by very low contact angles (~10°) below LCST, and very high ones (~160°) above LCST. Results for several methods are presented with lessons learned to guide future development of surfaces with temperature-responsive wetting properties.
610

Effect of pressure on metal-organic frameworks (MOFs)

Graham, Alexander John January 2013 (has links)
A growing field of research has evolved around the design and synthesis of a variety of porous metal-organic framework (MOF) materials. Some of the most promising areas for which these materials are potentially useful candidates include gas-separation, heterogeneous catalysis, and gas-storage, and all of these applications involve placing the MOF under pressure. There is clearly a need to understand the structural response of MOFs to applied pressure. Nevertheless, hitherto there are very few published investigations dedicated to determining the behaviour of porous hybrid materials under pressure. Through the use of high-pressure single-crystal X-ray diffraction studies, a series of MOF materials have been studied. Here we present the effect of pressure on a series of MOFs. In chapter 2, the effect of pressure on the prototypical MOF called MOF-5 was studied experimentally from ambient pressure to 3.2 GPa. Here, application of pressure was driven by the hydrostatic medium being forced into the pores of the MOF, which altered the mechanical properties of MOF-5, in particular, medium inclusion delayed the onset of amorphization. Complementary computational analysis was also performed to elucidate further the effect of medium inclusion on compressive behaviour. Detailed structural data was also collected as a function of pressure on the MOF Cu-btc. Application of pressure caused solvent to be squeezed into the pores (like MOF-5) until a phase transition occurred, driven by the sudden compression and expansion of equatorial and axial Cu–O bonds. High-pressure post-synthetic modification of a MOF is reported for the first time. On application of pressure of 0.2 GPa to the Cu-based MOF called STAM-1, a ligand exchange reaction takes place resulting in a change in pore size, shape, and hydrophilicity of the resulting pores. Here, we also demonstrate the ability to force hydrophilic molecules into hydrophobic pores using pressure, counteracting the hydrophobic effect. A high-pressure combined experimental and computational study has been carried to probe the effect of pressure on ‘breathing’ mechanisms in a zeolitic imidazolate framework (or ZIF) called ZIF-8. The penetration of guest molecules and the accommodation of pressure are shown to be inextricably linked to the rotation of methylimidazolate groups in the structure. Finally, the application of pressure to the MOF Sc₂BDC₃ and the nitro functionalized derivative Sc₂(NO₂-BDC)₃ was also studied. Here, the effect of chemical modification of the organic ligand, whilst maintaining framework topology, has been investigated as it pertains to compressibility. Directionality of compression is observed and this is rationalized with respect to the framework topology and medium inclusion/exclusion.

Page generated in 0.0396 seconds