Spelling suggestions: "subject:"pretrained anguage models"" "subject:"pretrained 1anguage models""
1 |
Generalization and Fairness Optimization in Pretrained Language ModelsGhanbar Zadeh, Somayeh 05 1900 (has links)
This study introduces an effective method to address the generalization challenge in pretrained language models (PLMs), which affects their performance on diverse linguistic data beyond their training scope. Improving PLMs' adaptability to out-of-distribution (OOD) data is essential for their reliability and practical utility in real-world applications. Furthermore, we address the ethical imperative of fairness in PLMs, particularly as they become integral to decision-making in sensitive societal sectors. We introduce gender-tuning, to identify and disrupt gender-related biases in training data. This method perturbs gendered terms, replacing them to break associations with other words. Gender-tuning stands as a practical, ethical intervention against gender bias in PLMs. Finally, we present FairAgent, a novel framework designed to imbue small language models (SLMs) with fairness, drawing on the knowledge of large language models (LLMs) without incurring the latter's computational costs. FairAgent operates by enabling SLMs to consult with LLMs, harnessing their vast knowledge to guide the generation of less biased content. This dynamic system not only detects bias in SLM responses but also generates prompts to correct it, accumulating effective prompts for future use. Over time, SLMs become increasingly adept at producing fair responses, enhancing both computational efficiency and fairness in AI-driven interactions.
|
2 |
End-to-end dialogové systémy s předtrénovanými jazykovými modely / End-to-end dialogue systems with pretrained language modelsKulhánek, Jonáš January 2021 (has links)
Current dialogue systems typically consist of separate components, which are manu- ally engineered to a large part and need extensive annotation. End-to-end trainable sys- tems exist but produce lower-quality, unreliable outputs. The recent transformer-based pre-trained language models such as GPT-2 brought considerable progress to language modelling, but they rely on huge amounts of textual data, which are not available for common dialogue domains. Therefore, training these models runs a high risk of overfit- ting. To overcome these obstacles, we propose a novel end-to-end dialogue system called AuGPT. We add auxiliary training objectives to use training data more efficiently, and we use massive data augmentation via back-translation and pretraining on multiple datasets to increase data volume and diversity. We evaluate our system using automatic methods (corpus-based metrics, user simulation), human evaluation as part of the DSTC 9 shared task challenge (where our system placed 3rd out of 10), as well as extensive manual error analysis. Our method substantially outperforms the baseline on the MultiWOZ bench- mark and shows competitive results with state-of-the-art end-to-end dialogue systems. 1
|
3 |
Improving the Accessibility of Arabic Electronic Theses and Dissertations (ETDs) with Metadata and ClassificationAbdelrahman, Eman January 2021 (has links)
Much research work has been done to extract data from scientific papers, journals, and articles. However, Electronic Theses and Dissertations (ETDs) remain an unexplored genre of data in the research fields of natural language processing and machine learning. Moreover, much of the related research involved data that is in the English language. Arabic data such as news and tweets have begun to receive some attention in the past decade. However, Arabic ETDs remain an untapped source of data despite the vast number of benefits to students and future generations of scholars. Some ways of improving the browsability and accessibility of data include data annotation, indexing, parsing, translation, and classification. Classification is essential for the searchability and management of data, which can be manual or automated. The latter is beneficial when handling growing volumes of data. There are two main roadblocks to performing automatic subject classification on Arabic ETDs. The first is the unavailability of a public corpus of Arabic ETDs. The second is the Arabic language’s linguistic complexity, especially in academic documents. This research presents the Otrouha project, which aims at building a corpus of key metadata of Arabic ETDs as well as providing a methodology for their automatic subject classification. The first goal is aided by collecting data from the AskZad Digital Library. The second goal is achieved by exploring different machine learning and deep learning techniques. The experiments’ results show that deep learning using pretrained language models gave the highest classification performance, indicating that language models significantly contribute to natural language understanding. / M.S. / An Electronic Thesis or Dissertation (ETD) is an openly-accessible electronic version of a graduate student’s research thesis or dissertation. It documents their main research effort that has taken place and becomes available in the University Library instead of a paper copy. Over time, collections of ETDs have been gathered and made available online through different digital libraries. ETDs are a valuable source of information for scholars and researchers, as well as librarians. With the digitalization move in most Middle Eastern Universities, the need to make Arabic ETDs more accessible significantly increases as their numbers increase. One of the ways to improve their accessibility and searchability is through providing automatic classification instead of manual classification. This thesis project focuses on building a corpus of metadata of Arabic ETDs and building a framework for their automatic subject classification. This is expected to pave the way for more exploratory research on this valuable genre of data.
|
Page generated in 0.0696 seconds