• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neurofisiologia hipocampal durante sess?es de sono intercaladas por explora??o espacial: Reverbera??o do passado ou predi??o do futuro?

Belchior, Hindiael Aeraf 17 April 2009 (has links)
Made available in DSpace on 2014-12-17T15:36:55Z (GMT). No. of bitstreams: 1 HindiaelAB.pdf: 2244465 bytes, checksum: b4b49c99d0a214c6b0cf8eb0b870a595 (MD5) Previous issue date: 2009-04-17 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / The ability to predict future rewards or threats is crucial for survival. Recent studies have addressed future event prediction by the hippocampus. Hippocampal neurons exhibit robust selectivity for spatial location. Thus, the activity of hippocampal neurons represents a cognitive map of space during navigation as well as during planning and recall. Spatial selectivity allows the hippocampus to be involved in the formation of spatial and episodic memories, including the sequential ordering of events. On the other hand, the discovery of reverberatory activity in multiple forebrain areas during slow wave and REM sleep underscored the role of sleep on the consolidation of recently acquired memory traces. To this date, there are no studies addressing whether neuronal activity in the hippocampus during sleep can predict regular environmental shifts. The aim of the present study was to investigate the activity of neuronal populations in the hippocampus during sleep sessions intercalated by spatial exploration periods, in which the location of reward changed in a predictable way. To this end, we performed the chronic implantation of 32-channel multielectrode arrays in the CA1 regions of the hippocampus in three male rats of the Wistar strain. In order to activate different neuronal subgroups at each cycle of the task, we exposed the animals to four spatial exploration sessions in a 4-arm elevated maze in which reward was delivered in a single arm per session. Reward location changed regularly at every session in a clockwise manner, traversing all the arms at the end of the daily recordings. Animals were recorded from 2-12 consecutive days. During spatial exploration of the 4-arm elevated maze, 67,5% of the recorded neurons showed firing rate differences across the maze arms. Furthermore, an average of 42% of the neurons showed increased correlation (R>0.3) between neuronal pairs in each arm. This allowed us to sort representative neuronal subgroups for each maze arm, and to analyze the activity of these subgroups across sleep sessions. We found that neuronal subgroups sorted by firing rate differences during spatial exploration sustained these differences across sleep sessions. This was not the case with neuronal subgroups sorted according to synchrony (correlation). In addition, the correlation levels between sleep sessions and waking patterns sampled in each arm were larger for the entire population of neurons than for the rate or synchrony subgroups. Neuronal activity during sleep of the entire neuronal population or subgroups did not show different correlations among the four arm mazes. On the other hand, we verified that neuronal activity during pre-exploration sleep sessions was significantly more similar to the activity patterns of the target arm than neuronal activity during pre-exploration sleep sessions. In other words, neuronal activity during sleep that precedes the task reflects more strongly the location of reward than neuronal activity during sleep that follows the task. Our results suggest that neuronal activity during sleep can predict regular environmental changes / A capacidade de prever amea?as ou recompensas futuras ? crucial para a sobreviv?ncia. Estudos recentes t?m investigado a predi??o de eventos futuros pelo hipocampo. Neur?nios hipocampais exibem robusta seletividade para localiza??o do animal no espa?o. Assim, a atividade desses neur?nios representa um mapa cognitivo do espa?o durante a navega??o e tamb?m durante o planejamento ou retrospectiva de navega??o. Tal seletividade permite o envolvimento do hipocampo na forma??o de mem?rias espaciais e epis?dicas, incluindo o ordenamento de eventos sequenciais. Por outro lado, a descoberta de atividade reverberante em m?ltiplas ?reas cerebrais durante os sonos de ondas lentas e REM revela o papel do sono na consolida??o de tra?os de mem?ria rec?m adquiridos na vig?lia. At? o momento, n?o h? estudos investigando se a atividade de neur?nios hipocampais durante o sono pode prever mudan?as ambientais regulares. O objetivo deste estudo foi analisar a atividade de popula??es de neur?nios hipocampais durante sess?es de sono intercaladas por explora??o espacial, em que a localiza??o da recompensa muda de forma previs?vel a cada bloco da tarefa. Para isso, realizamos o implante cr?nico de uma matriz de 32 eletrodos na regi?o de CA1 do hipocampo em tr?s ratos machos da linhagem Wistar. Com a inten??o de induzir a atividade de diferentes subgrupos de neur?nios a cada ciclo de tarefa, submetemos os animais a quatro blocos de explora??o espacial de um labirinto em cruz em que a recompensa era oferecida apenas em um bra?o a cada bloco. A localiza??o da recompensa mudava a cada bloco, percorrendo todos os bra?os ao final da sess?o di?ria. Os animais foram registrados por 2-12 dias consecutivos. Durante a explora??o do labirinto em cruz, 67,5% dos neur?nios registrados apresentaram diferen?as de taxas de disparo entre os quatro bra?os do labirinto. Al?m disso, em m?dia, 42% dos neur?nios apresentaram grau elevado de sincronia entre pares neuronais (R>0,3) em cada bra?o. Isso nos permitiu selecionar subgrupos de neur?nios representativos para cada bra?o do labirinto e analisar a atividade desses subgrupos durante as sess?es de sono. Observamos que os subgrupos de neur?nios selecionados por diferen?as na taxa de disparo durante explora??o dos bra?os mant?m as taxas de disparo diferenciadas nas sess?es de sono. O mesmo n?o ocorre para subgrupos selecionados por sincronia. Al?m disso, os n?veis de similaridade das sess?es de sono com os padr?es de cada bra?o foram maiores usando toda a popula??o de neur?nios, do que usando subpopula??es selecionadas por taxa ou sincronia. A atividade da popula??o, ou de subpopula??es, de neur?nios hipocampais durante as sess?es de sono n?o apresentou similaridade diferente entre os quatro bra?os do labirinto em cruz. Entretanto, verificamos que as sess?es de sono pr?-explora??o apresentam maiores n?veis de similaridade com a atividade do bra?o alvo do que as sess?es de sono p?s-explora??o. Ou seja, a atividade neural do sono que antecede a tarefa reflete mais fortemente a localiza??o da recompensa do que a atividade do sono subsequente a tarefa. Nossos resultados sugerem que a atividade neural durante o sono pode prever mudan?as ambientais regulares.

Page generated in 0.0713 seconds