• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 15
  • 15
  • 15
  • 12
  • 12
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Previsão de cheias por conjunto em curto a médio prazo: bacia do Taquari-Antas/RS

Siqueira, Vinícius Alencar January 2015 (has links)
A previsão hidrológica possibilita a identificação antecipada de eventos de cheia potencialmente causadores de inundação, o que é de grande importância para a atuação de entidades como a Defesa Civil. Quando se deseja estender a antecedência no tempo em relação a estes eventos, principalmente nos casos onde a bacia de interesse é relativamente rápida, torna-se necessária a incorporação de previsões quantitativas de precipitação (QPF) na modelagem hidrológica, as quais podem ser obtidas a partir de modelos numéricos de previsão do tempo. Entretanto, a falta de acurácia atribuída a estas previsões de chuva, dadas de forma determinística, vem promovendo sua substituição por sistemas de previsão meteorológica por conjunto (EPS - Ensemble Prediction Systems), cuja finalidade é a geração de possíveis estados futuros da atmosfera para considerar as incertezas associadas ao seu estado inicial e às deficiências na representação física dos modelos de previsão do tempo. Neste contexto, o presente estudo teve por objetivo avaliar uma metodologia de previsão de cheias por conjunto na bacia do Taquari-Antas/RS até a cidade de Encantado (19.000 km²), localizada na região Sul do Brasil. Para tanto, foi utilizado o modelo hidrológico MGB-IPH acoplado a diferentes sistemas de previsão, sendo eles: (i) EPS Regional ETA, de curto prazo (até 72 horas) com 5 membros de diferentes parametrizações; (ii) EPS Global ECMWF de médio prazo (até 10 dias) com 50 membros de condições iniciais perturbadas, incluindo perturbação estocástica nos parâmetros de ajuste do modelo e; (iii) Previsão Determinística do Modelo Regional ETA (até 7 dias). A avaliação das previsões consistiu em dois hindcastings distintos, envolvendo uma análise visual de eventos singulares ocorridos em 06/06/2014 e 21/07/2011 além de uma análise estatística no período de Mar/2014 - Nov/2014. Durante a análise visual foi possível identificar, a partir de antecedências de 5 a 6 dias, uma persistência na previsão dada pelo crescente número de membros do conjunto de médio prazo (ECMWF) com superação dos limiares de referência, na medida em que se aproximavam os eventos de cheia. Apesar da grande incerteza na magnitude das previsões hidrológicas para o conjunto de curto prazo, a vazão máxima foi relativamente bem prevista por pelo menos 1 membro em quase todas as antecedências, enquanto que a previsão do timing dos eventos foi considerada de boa confiabilidade. Durante a avaliação estatística foi possível notar uma falta de espalhamento nos conjuntos, com tendência de subestimativa de acordo com o aumento da antecedência. Em uma comparação com previsões determinísticas, as previsões por conjunto demonstraram maior acurácia principalmente até 72 horas de antecedência, com destaque para a maior probabilidade de detecção dos limiares de referência e manutenção de falso alarme a níveis reduzidos. Além disso, verificou-se também que a agregação de previsões efetuadas em tempo anterior naquelas atuais acarreta em ligeira ampliação do espalhamento do conjunto e maiores probabilidades de detecção dos limiares de alerta para os membros mais elevados, apesar da redução no desempenho em termos de acurácia e viés. De forma geral, as previsões por conjunto apresentam potencial para servir como uma informação complementar em sistemas de alerta contra cheias, possibilitando uma melhor preparação dos agentes envolvidos durante a ocorrência destes eventos. / Hydrological forecasting plays an important role for issuing flood warnings, allowing for anticipation and better preparation of authorities at the occurrence of such events. In order to extend lead time in a flood forecast, especially when the catchment response time is relatively fast, it may be useful to couple a hydrological model to quantitative precipitation forecasts (QPF), usually obtained directly from numerical weather prediction (NWP). However, deterministic (i.e. single) QPF are usually referred to many errors and lack of accuracy, mainly caused by uncertainties on initial state of the atmosphere and on physical representation of weather forecasting models. To address these shortcomings, it becomes necessary to take into account the uncertainties associated to rain forecasts, which can be represented by Ensemble Prediction Systems (EPS). The purpose of such systems is to provide different trajectories of the atmosphere by perturbations on its initial condition and on parameterization schemes of the models, generating an ensemble of forecasts that can be used as input to hydrological modelling (HEPS). In this context, the present study aimed to assess a methodology of ensemble flood forecasting on Taquari-Antas basin up to the city of Encantado/RS (19.000 km²), located in southern Brazil. Therefore, the hydrological model MGB-IPH was coupled to different forecasting systems: (i) Short Range EPS ETA (up to 72 hours), a regional model with 5 members of different parameterization schemes; (ii) Medium Range EPS ECMWF (up to 10 days), a global model with 50 members of perturbed initial conditions and stochastic perturbation in the model parameters; (iii) Deterministic ETA Model (up to 7 days). The forecasts were evaluated by two different hindcastings, which includes a visual assessment of singular events occurred on 2011 and 2014 and a statistical analysis for the period between Mar/2014 and Nov/2014. It was possible to identify a forecast persistence on medium-range for the selected events, by the increasing number of members exceeding the reference thresholds from lead times up to 5 - 6 days. On the short range, although large uncertainties in the magnitude of hydrological forecasts were found, the peak discharge was well forecasted - at least for a single member - in nearly all lead times, whereas the prediction of the peak timing was considered reliable. Regarding to statistical evaluation, an inadequate spread in the ensemble was observed from short- to medium-range, with a tendency of underestimation for longer lead times. In a comparison with deterministic forecasts, the ensemble forecasts showed higher accuracy especially up to 72 hours in advance, including highlights on greater probability of detection (POD) above the reference thresholds even with low false alarm rates. It also was found that the a combination of previous forecasts on the recent ones leads to a slight increase of ensemble spread and POD for higher members, despite the performance reduction in terms of accuracy and bias. In summary, the hydrological ensemble forecasts demonstrated a good potential to serve as an additional information within a Flood Alert System.
12

Previsão de cheias por conjunto em curto a médio prazo: bacia do Taquari-Antas/RS

Siqueira, Vinícius Alencar January 2015 (has links)
A previsão hidrológica possibilita a identificação antecipada de eventos de cheia potencialmente causadores de inundação, o que é de grande importância para a atuação de entidades como a Defesa Civil. Quando se deseja estender a antecedência no tempo em relação a estes eventos, principalmente nos casos onde a bacia de interesse é relativamente rápida, torna-se necessária a incorporação de previsões quantitativas de precipitação (QPF) na modelagem hidrológica, as quais podem ser obtidas a partir de modelos numéricos de previsão do tempo. Entretanto, a falta de acurácia atribuída a estas previsões de chuva, dadas de forma determinística, vem promovendo sua substituição por sistemas de previsão meteorológica por conjunto (EPS - Ensemble Prediction Systems), cuja finalidade é a geração de possíveis estados futuros da atmosfera para considerar as incertezas associadas ao seu estado inicial e às deficiências na representação física dos modelos de previsão do tempo. Neste contexto, o presente estudo teve por objetivo avaliar uma metodologia de previsão de cheias por conjunto na bacia do Taquari-Antas/RS até a cidade de Encantado (19.000 km²), localizada na região Sul do Brasil. Para tanto, foi utilizado o modelo hidrológico MGB-IPH acoplado a diferentes sistemas de previsão, sendo eles: (i) EPS Regional ETA, de curto prazo (até 72 horas) com 5 membros de diferentes parametrizações; (ii) EPS Global ECMWF de médio prazo (até 10 dias) com 50 membros de condições iniciais perturbadas, incluindo perturbação estocástica nos parâmetros de ajuste do modelo e; (iii) Previsão Determinística do Modelo Regional ETA (até 7 dias). A avaliação das previsões consistiu em dois hindcastings distintos, envolvendo uma análise visual de eventos singulares ocorridos em 06/06/2014 e 21/07/2011 além de uma análise estatística no período de Mar/2014 - Nov/2014. Durante a análise visual foi possível identificar, a partir de antecedências de 5 a 6 dias, uma persistência na previsão dada pelo crescente número de membros do conjunto de médio prazo (ECMWF) com superação dos limiares de referência, na medida em que se aproximavam os eventos de cheia. Apesar da grande incerteza na magnitude das previsões hidrológicas para o conjunto de curto prazo, a vazão máxima foi relativamente bem prevista por pelo menos 1 membro em quase todas as antecedências, enquanto que a previsão do timing dos eventos foi considerada de boa confiabilidade. Durante a avaliação estatística foi possível notar uma falta de espalhamento nos conjuntos, com tendência de subestimativa de acordo com o aumento da antecedência. Em uma comparação com previsões determinísticas, as previsões por conjunto demonstraram maior acurácia principalmente até 72 horas de antecedência, com destaque para a maior probabilidade de detecção dos limiares de referência e manutenção de falso alarme a níveis reduzidos. Além disso, verificou-se também que a agregação de previsões efetuadas em tempo anterior naquelas atuais acarreta em ligeira ampliação do espalhamento do conjunto e maiores probabilidades de detecção dos limiares de alerta para os membros mais elevados, apesar da redução no desempenho em termos de acurácia e viés. De forma geral, as previsões por conjunto apresentam potencial para servir como uma informação complementar em sistemas de alerta contra cheias, possibilitando uma melhor preparação dos agentes envolvidos durante a ocorrência destes eventos. / Hydrological forecasting plays an important role for issuing flood warnings, allowing for anticipation and better preparation of authorities at the occurrence of such events. In order to extend lead time in a flood forecast, especially when the catchment response time is relatively fast, it may be useful to couple a hydrological model to quantitative precipitation forecasts (QPF), usually obtained directly from numerical weather prediction (NWP). However, deterministic (i.e. single) QPF are usually referred to many errors and lack of accuracy, mainly caused by uncertainties on initial state of the atmosphere and on physical representation of weather forecasting models. To address these shortcomings, it becomes necessary to take into account the uncertainties associated to rain forecasts, which can be represented by Ensemble Prediction Systems (EPS). The purpose of such systems is to provide different trajectories of the atmosphere by perturbations on its initial condition and on parameterization schemes of the models, generating an ensemble of forecasts that can be used as input to hydrological modelling (HEPS). In this context, the present study aimed to assess a methodology of ensemble flood forecasting on Taquari-Antas basin up to the city of Encantado/RS (19.000 km²), located in southern Brazil. Therefore, the hydrological model MGB-IPH was coupled to different forecasting systems: (i) Short Range EPS ETA (up to 72 hours), a regional model with 5 members of different parameterization schemes; (ii) Medium Range EPS ECMWF (up to 10 days), a global model with 50 members of perturbed initial conditions and stochastic perturbation in the model parameters; (iii) Deterministic ETA Model (up to 7 days). The forecasts were evaluated by two different hindcastings, which includes a visual assessment of singular events occurred on 2011 and 2014 and a statistical analysis for the period between Mar/2014 and Nov/2014. It was possible to identify a forecast persistence on medium-range for the selected events, by the increasing number of members exceeding the reference thresholds from lead times up to 5 - 6 days. On the short range, although large uncertainties in the magnitude of hydrological forecasts were found, the peak discharge was well forecasted - at least for a single member - in nearly all lead times, whereas the prediction of the peak timing was considered reliable. Regarding to statistical evaluation, an inadequate spread in the ensemble was observed from short- to medium-range, with a tendency of underestimation for longer lead times. In a comparison with deterministic forecasts, the ensemble forecasts showed higher accuracy especially up to 72 hours in advance, including highlights on greater probability of detection (POD) above the reference thresholds even with low false alarm rates. It also was found that the a combination of previous forecasts on the recent ones leads to a slight increase of ensemble spread and POD for higher members, despite the performance reduction in terms of accuracy and bias. In summary, the hydrological ensemble forecasts demonstrated a good potential to serve as an additional information within a Flood Alert System.
13

Hidrologia da bacia Amazônica : compreensão e previsão com base em modelagem hidrológica-hidrodinâmica e sensoriamento remoto / Hydrologie du bassin Amazonien : compréhension et prévision fondées sur la modélisation hydrologique-hydrodynamique et la télédétection / Hydrology of the Amazon basin : understanding and forecasting based on hydrologichydrodynamic modelling and remote sensing

Paiva, Rodrigo Cauduro Dias de January 2012 (has links)
Le bassin Amazonien est connu comme le plus grand système hydrologique du monde et pour son rôle important sur le système terre, influençant le cycle du carbone et le climat global. Les pressions anthropiques récentes, telles que la déforestation, les changements climatiques, la construction de barrage hydro-électriques, ainsi que l’augmentation des crues et sécheresse extrêmes qui se produisent dans cette région, motivent l’étude de l’hydrologie du bassin Amazonien. Dans le même temps, des méthodes hydrologiques de modélisation et de surveillance par observation satellitaire ont été développées qui peuvent fournir les bases techniques à cette fin. Ce travail a eu pour objectif la compréhension et la prévision du régime hydrologique du bassin Amazonien. Nous avons développé et évaluer des techniques de modélisation hydrologique-hydrodynamique de grande échelle, d’assimilation de données in situ et spatiales et de prévision hydrologique. L’ensemble de ces techniques nous a permis d’explorer le fonctionnement du bassin Amazonien en terme de processus physiques et de prévisibilité hydrologique. Nous avons utilisé le modèle hydrologique-hydrodynamique de grande échelle MGB-IPH pour simuler le bassin, le forçage précipitation étant fourni par l’observation spatiale. Les résultats de la modélisation sont satisfaisants lorsque validés à partir de données in situ de débit et de hauteurs d’eau mais également de données dérivées de l’observation spatiale incluant les niveaux d’eau déduits de l’altimétrie radar, le contenu en eau total issu de la gravimétrie satellitaire, l’extension des zones inondées. Nous avons montré que les eaux superficielles sont responsables en grande partie de la variation du stock total d’eau, l’influence des grands plans d’eau sur la variabilité spatiale des précipitations et l’influence des plaines d’inondation et des effets de remous sur la propagation des ondes de crues. Nos analyses ont montré le rôle prépondérant des conditions initiales, en particulier des eaux superficielles, pour la prévisibilité des grands fleuves Amazoniens, la connaissance des précipitations futures n’ayant qu’une influence secondaire. Ainsi, pour améliorer l’estimation des variables d’état hydrologiques, nous avons développé, pour la première fois, un schéma d’assimilation de données pour un modèle hydrologique-hydrodynamique de grande échelle, pour l’assimilation de données de jaugeages in situ et dérivées de l’altimétrie radar (débit et hauteur d’eau), dont les résultats se sont montrés satisfaisants. Nous avons également développé un prototype de système de prévision des débits pour le bassin Amazonien, basé sur le modèle initialisé avec les conditions initiales optimales fournies par le schéma d’assimilation de données, et en utilisant la pluie estimée par satellite disponible en temps réel. Les résultats ont été prometteurs, le modèle étant capable de prévoir les débits dans les principaux fleuves Amazoniens avec une antécédence importante (entre 1 et 3 mois), permettant d’anticiper, par exemple, la sècheresse extrême de 2005. Ces résultats démontrent le potentiel de la modélisation hydrologique appuyé par l’observation spatiale pour la prévision des débits avec une grande antécédence dans les grands bassins versant mondiaux. / A bacia Amazônica se destaca como o principal sistema hidrológico do mundo e pelo seu importante papel no sistema terrestre, influenciando o ciclo de carbono e o clima global. Recentes pressões antrópicas, como o desflorestamento, mudanças climáticas e a construção de barragens hidroelétricas, somados às crescentes cheias e secas extremas ocorridas nesta região, motivam o estudo da hidrologia da bacia Amazônica. Ao mesmo tempo, têm se desenvolvido métodos hidrológicos de modelagem e monitoramento via sensoriamento remoto que podem fornecer as bases técnicas para este fim. Este trabalho objetivou a compreensão e previsão da hidrologia da bacia Amazônica. Foram desenvolvidas e avaliadas diversas técnicas, incluindo de modelagem hidrológica-hidrodinâmica de larga escala, de assimilação de dados in situ e de sensoriamento remoto, e de previsão hidrológica. Este conjunto de técnicas foi utilizado para compreender o funcionamento da bacia Amazônica em termos de seus processos hidrológicos e sua previsibilidade hidrológica. O modelo hidrológico-hidrodinâmico de larga escala MGB-IPH foi utilizado para simular a bacia, sendo forçado com dados de chuva estimados por satélite. O modelo mostrou bom desempenho em uma validação detalhada contra observações de vazões e cotas in situ além de dados oriundos de sensoriamento remoto, incluindo níveis d’água de altimetria por radar, armazenamento d’água de gravimetria espacial e extensão de áreas alagadas. Mostrou-se a dominância das águas superficiais nas variações do armazenamento de água, a influência dos grandes corpos d’água sobre a variabilidade espacial da precipitação, além da importância das várzeas da inundação e efeitos de remanso sobre a propagação das ondas de cheia Amazônicas. As condições hidrológicas iniciais, com destaque para as águas superficiais, mostraram dominar a previsibilidade hidrológica nos grandes rios amazônicos, tendo assim a precipitação no futuro um papel secundário. Portanto, afim de melhor estimar os estados hidrológicos, de forma pioneira, foi desenvolvido um esquema de assimilação de dados para um modelo hidrológicohidrodinâmico de larga escala para assimilar informações in situ e de altimetria por radar, cujo desempenho se mostrou satisfatório. Desenvolveu-se também um protótipo de sistema de previsão de vazões para a bacia Amazônica, baseado no modelo inicializado com condições iniciais ótimas do esquema de assimilação de dados e utilizando precipitação estimada por satélite disponível em tempo real. Os resultados foram promissores e o modelo foi capaz de prever vazões nos principais rios amazônicos com grande antecedência (~1 a 3 meses), antecipando, por exemplo, a grande seca de 2005. Estes resultados mostram o potencial da modelagem hidrológica de larga escala apoiada por informação de sensoriamento remoto na previsão de vazões com alta antecedência nas grandes bacias hidrográficas do mundo. / The Amazon basin is known as the world’s main hydrological system and by its important role in the earth system, carbon cycle and global climate. Recent anthropogenic pressure, such as deforestation, climate change and the construction of hydropower dams, together with increasing extreme floods and droughts, encourage the research on the hydrology of the Amazon basin. On the other hand, hydrological methods for modeling and remotely sensed observation are being developed, and can be used for this goal. This work aimed at understanding and forecasting the hydrology of the Amazon River basin. We developed and evaluated techniques for large scale hydrologic-hydrodynamic modeling, data assimilation of both in situ and remote sensing data and hydrological forecasting. By means of these techniques, we explored the functioning of the Amazon River basin, in terms of its physical processes and its hydrological predictability. We used the MGB-IPH large scale hydrologichydrodynamic model forced by satellite-based precipitation. The model had a good performance when extensively validated against in situ discharge and stage measurements and also remotely sensed data, including radar altimetry-based water levels, gravimetric-based terrestrial water storage and flood inundation extent. We showed that surface waters governs most of the terrestrial water storage changes, the influence of large water bodies on precipitation spatial variability and the importance of the floodplains and backwater effects on the routing of the Amazon floodwaves. Analyses showed the dominant role of hydrological initial conditions, mainly surface waters, on hydrological predictability on the main Amazon Rivers, while the knowledge of future precipitation may be secondary. Aiming at the optimal estimation of these hydrological states, we developed, for the first time, a data assimilation scheme for both gauged and satellite altimetry-based discharge and water levels into a large scale hydrologic-hydrodynamic model, and it showed a good performance. We also developed a forecast system prototype, where the model is based on initial conditions gathered by the data assimilation scheme and forced by satellite-based precipitation. Results are promising and the model was able to provide accurate discharge forecasts in the main Amazon rivers even for very large lead times (~1 to 3 months), predicting, for example, the historical 2005 drought. These results point to the potential of large scale hydrological models supported with remote sensing information for providing hydrological forecasts well in advance at world’s large rivers and poorly monitored regions.
14

Hidrologia da bacia Amazônica : compreensão e previsão com base em modelagem hidrológica-hidrodinâmica e sensoriamento remoto / Hydrologie du bassin Amazonien : compréhension et prévision fondées sur la modélisation hydrologique-hydrodynamique et la télédétection / Hydrology of the Amazon basin : understanding and forecasting based on hydrologichydrodynamic modelling and remote sensing

Paiva, Rodrigo Cauduro Dias de January 2012 (has links)
Le bassin Amazonien est connu comme le plus grand système hydrologique du monde et pour son rôle important sur le système terre, influençant le cycle du carbone et le climat global. Les pressions anthropiques récentes, telles que la déforestation, les changements climatiques, la construction de barrage hydro-électriques, ainsi que l’augmentation des crues et sécheresse extrêmes qui se produisent dans cette région, motivent l’étude de l’hydrologie du bassin Amazonien. Dans le même temps, des méthodes hydrologiques de modélisation et de surveillance par observation satellitaire ont été développées qui peuvent fournir les bases techniques à cette fin. Ce travail a eu pour objectif la compréhension et la prévision du régime hydrologique du bassin Amazonien. Nous avons développé et évaluer des techniques de modélisation hydrologique-hydrodynamique de grande échelle, d’assimilation de données in situ et spatiales et de prévision hydrologique. L’ensemble de ces techniques nous a permis d’explorer le fonctionnement du bassin Amazonien en terme de processus physiques et de prévisibilité hydrologique. Nous avons utilisé le modèle hydrologique-hydrodynamique de grande échelle MGB-IPH pour simuler le bassin, le forçage précipitation étant fourni par l’observation spatiale. Les résultats de la modélisation sont satisfaisants lorsque validés à partir de données in situ de débit et de hauteurs d’eau mais également de données dérivées de l’observation spatiale incluant les niveaux d’eau déduits de l’altimétrie radar, le contenu en eau total issu de la gravimétrie satellitaire, l’extension des zones inondées. Nous avons montré que les eaux superficielles sont responsables en grande partie de la variation du stock total d’eau, l’influence des grands plans d’eau sur la variabilité spatiale des précipitations et l’influence des plaines d’inondation et des effets de remous sur la propagation des ondes de crues. Nos analyses ont montré le rôle prépondérant des conditions initiales, en particulier des eaux superficielles, pour la prévisibilité des grands fleuves Amazoniens, la connaissance des précipitations futures n’ayant qu’une influence secondaire. Ainsi, pour améliorer l’estimation des variables d’état hydrologiques, nous avons développé, pour la première fois, un schéma d’assimilation de données pour un modèle hydrologique-hydrodynamique de grande échelle, pour l’assimilation de données de jaugeages in situ et dérivées de l’altimétrie radar (débit et hauteur d’eau), dont les résultats se sont montrés satisfaisants. Nous avons également développé un prototype de système de prévision des débits pour le bassin Amazonien, basé sur le modèle initialisé avec les conditions initiales optimales fournies par le schéma d’assimilation de données, et en utilisant la pluie estimée par satellite disponible en temps réel. Les résultats ont été prometteurs, le modèle étant capable de prévoir les débits dans les principaux fleuves Amazoniens avec une antécédence importante (entre 1 et 3 mois), permettant d’anticiper, par exemple, la sècheresse extrême de 2005. Ces résultats démontrent le potentiel de la modélisation hydrologique appuyé par l’observation spatiale pour la prévision des débits avec une grande antécédence dans les grands bassins versant mondiaux. / A bacia Amazônica se destaca como o principal sistema hidrológico do mundo e pelo seu importante papel no sistema terrestre, influenciando o ciclo de carbono e o clima global. Recentes pressões antrópicas, como o desflorestamento, mudanças climáticas e a construção de barragens hidroelétricas, somados às crescentes cheias e secas extremas ocorridas nesta região, motivam o estudo da hidrologia da bacia Amazônica. Ao mesmo tempo, têm se desenvolvido métodos hidrológicos de modelagem e monitoramento via sensoriamento remoto que podem fornecer as bases técnicas para este fim. Este trabalho objetivou a compreensão e previsão da hidrologia da bacia Amazônica. Foram desenvolvidas e avaliadas diversas técnicas, incluindo de modelagem hidrológica-hidrodinâmica de larga escala, de assimilação de dados in situ e de sensoriamento remoto, e de previsão hidrológica. Este conjunto de técnicas foi utilizado para compreender o funcionamento da bacia Amazônica em termos de seus processos hidrológicos e sua previsibilidade hidrológica. O modelo hidrológico-hidrodinâmico de larga escala MGB-IPH foi utilizado para simular a bacia, sendo forçado com dados de chuva estimados por satélite. O modelo mostrou bom desempenho em uma validação detalhada contra observações de vazões e cotas in situ além de dados oriundos de sensoriamento remoto, incluindo níveis d’água de altimetria por radar, armazenamento d’água de gravimetria espacial e extensão de áreas alagadas. Mostrou-se a dominância das águas superficiais nas variações do armazenamento de água, a influência dos grandes corpos d’água sobre a variabilidade espacial da precipitação, além da importância das várzeas da inundação e efeitos de remanso sobre a propagação das ondas de cheia Amazônicas. As condições hidrológicas iniciais, com destaque para as águas superficiais, mostraram dominar a previsibilidade hidrológica nos grandes rios amazônicos, tendo assim a precipitação no futuro um papel secundário. Portanto, afim de melhor estimar os estados hidrológicos, de forma pioneira, foi desenvolvido um esquema de assimilação de dados para um modelo hidrológicohidrodinâmico de larga escala para assimilar informações in situ e de altimetria por radar, cujo desempenho se mostrou satisfatório. Desenvolveu-se também um protótipo de sistema de previsão de vazões para a bacia Amazônica, baseado no modelo inicializado com condições iniciais ótimas do esquema de assimilação de dados e utilizando precipitação estimada por satélite disponível em tempo real. Os resultados foram promissores e o modelo foi capaz de prever vazões nos principais rios amazônicos com grande antecedência (~1 a 3 meses), antecipando, por exemplo, a grande seca de 2005. Estes resultados mostram o potencial da modelagem hidrológica de larga escala apoiada por informação de sensoriamento remoto na previsão de vazões com alta antecedência nas grandes bacias hidrográficas do mundo. / The Amazon basin is known as the world’s main hydrological system and by its important role in the earth system, carbon cycle and global climate. Recent anthropogenic pressure, such as deforestation, climate change and the construction of hydropower dams, together with increasing extreme floods and droughts, encourage the research on the hydrology of the Amazon basin. On the other hand, hydrological methods for modeling and remotely sensed observation are being developed, and can be used for this goal. This work aimed at understanding and forecasting the hydrology of the Amazon River basin. We developed and evaluated techniques for large scale hydrologic-hydrodynamic modeling, data assimilation of both in situ and remote sensing data and hydrological forecasting. By means of these techniques, we explored the functioning of the Amazon River basin, in terms of its physical processes and its hydrological predictability. We used the MGB-IPH large scale hydrologichydrodynamic model forced by satellite-based precipitation. The model had a good performance when extensively validated against in situ discharge and stage measurements and also remotely sensed data, including radar altimetry-based water levels, gravimetric-based terrestrial water storage and flood inundation extent. We showed that surface waters governs most of the terrestrial water storage changes, the influence of large water bodies on precipitation spatial variability and the importance of the floodplains and backwater effects on the routing of the Amazon floodwaves. Analyses showed the dominant role of hydrological initial conditions, mainly surface waters, on hydrological predictability on the main Amazon Rivers, while the knowledge of future precipitation may be secondary. Aiming at the optimal estimation of these hydrological states, we developed, for the first time, a data assimilation scheme for both gauged and satellite altimetry-based discharge and water levels into a large scale hydrologic-hydrodynamic model, and it showed a good performance. We also developed a forecast system prototype, where the model is based on initial conditions gathered by the data assimilation scheme and forced by satellite-based precipitation. Results are promising and the model was able to provide accurate discharge forecasts in the main Amazon rivers even for very large lead times (~1 to 3 months), predicting, for example, the historical 2005 drought. These results point to the potential of large scale hydrological models supported with remote sensing information for providing hydrological forecasts well in advance at world’s large rivers and poorly monitored regions.
15

Hidrologia da bacia Amazônica : compreensão e previsão com base em modelagem hidrológica-hidrodinâmica e sensoriamento remoto / Hydrologie du bassin Amazonien : compréhension et prévision fondées sur la modélisation hydrologique-hydrodynamique et la télédétection / Hydrology of the Amazon basin : understanding and forecasting based on hydrologichydrodynamic modelling and remote sensing

Paiva, Rodrigo Cauduro Dias de January 2012 (has links)
Le bassin Amazonien est connu comme le plus grand système hydrologique du monde et pour son rôle important sur le système terre, influençant le cycle du carbone et le climat global. Les pressions anthropiques récentes, telles que la déforestation, les changements climatiques, la construction de barrage hydro-électriques, ainsi que l’augmentation des crues et sécheresse extrêmes qui se produisent dans cette région, motivent l’étude de l’hydrologie du bassin Amazonien. Dans le même temps, des méthodes hydrologiques de modélisation et de surveillance par observation satellitaire ont été développées qui peuvent fournir les bases techniques à cette fin. Ce travail a eu pour objectif la compréhension et la prévision du régime hydrologique du bassin Amazonien. Nous avons développé et évaluer des techniques de modélisation hydrologique-hydrodynamique de grande échelle, d’assimilation de données in situ et spatiales et de prévision hydrologique. L’ensemble de ces techniques nous a permis d’explorer le fonctionnement du bassin Amazonien en terme de processus physiques et de prévisibilité hydrologique. Nous avons utilisé le modèle hydrologique-hydrodynamique de grande échelle MGB-IPH pour simuler le bassin, le forçage précipitation étant fourni par l’observation spatiale. Les résultats de la modélisation sont satisfaisants lorsque validés à partir de données in situ de débit et de hauteurs d’eau mais également de données dérivées de l’observation spatiale incluant les niveaux d’eau déduits de l’altimétrie radar, le contenu en eau total issu de la gravimétrie satellitaire, l’extension des zones inondées. Nous avons montré que les eaux superficielles sont responsables en grande partie de la variation du stock total d’eau, l’influence des grands plans d’eau sur la variabilité spatiale des précipitations et l’influence des plaines d’inondation et des effets de remous sur la propagation des ondes de crues. Nos analyses ont montré le rôle prépondérant des conditions initiales, en particulier des eaux superficielles, pour la prévisibilité des grands fleuves Amazoniens, la connaissance des précipitations futures n’ayant qu’une influence secondaire. Ainsi, pour améliorer l’estimation des variables d’état hydrologiques, nous avons développé, pour la première fois, un schéma d’assimilation de données pour un modèle hydrologique-hydrodynamique de grande échelle, pour l’assimilation de données de jaugeages in situ et dérivées de l’altimétrie radar (débit et hauteur d’eau), dont les résultats se sont montrés satisfaisants. Nous avons également développé un prototype de système de prévision des débits pour le bassin Amazonien, basé sur le modèle initialisé avec les conditions initiales optimales fournies par le schéma d’assimilation de données, et en utilisant la pluie estimée par satellite disponible en temps réel. Les résultats ont été prometteurs, le modèle étant capable de prévoir les débits dans les principaux fleuves Amazoniens avec une antécédence importante (entre 1 et 3 mois), permettant d’anticiper, par exemple, la sècheresse extrême de 2005. Ces résultats démontrent le potentiel de la modélisation hydrologique appuyé par l’observation spatiale pour la prévision des débits avec une grande antécédence dans les grands bassins versant mondiaux. / A bacia Amazônica se destaca como o principal sistema hidrológico do mundo e pelo seu importante papel no sistema terrestre, influenciando o ciclo de carbono e o clima global. Recentes pressões antrópicas, como o desflorestamento, mudanças climáticas e a construção de barragens hidroelétricas, somados às crescentes cheias e secas extremas ocorridas nesta região, motivam o estudo da hidrologia da bacia Amazônica. Ao mesmo tempo, têm se desenvolvido métodos hidrológicos de modelagem e monitoramento via sensoriamento remoto que podem fornecer as bases técnicas para este fim. Este trabalho objetivou a compreensão e previsão da hidrologia da bacia Amazônica. Foram desenvolvidas e avaliadas diversas técnicas, incluindo de modelagem hidrológica-hidrodinâmica de larga escala, de assimilação de dados in situ e de sensoriamento remoto, e de previsão hidrológica. Este conjunto de técnicas foi utilizado para compreender o funcionamento da bacia Amazônica em termos de seus processos hidrológicos e sua previsibilidade hidrológica. O modelo hidrológico-hidrodinâmico de larga escala MGB-IPH foi utilizado para simular a bacia, sendo forçado com dados de chuva estimados por satélite. O modelo mostrou bom desempenho em uma validação detalhada contra observações de vazões e cotas in situ além de dados oriundos de sensoriamento remoto, incluindo níveis d’água de altimetria por radar, armazenamento d’água de gravimetria espacial e extensão de áreas alagadas. Mostrou-se a dominância das águas superficiais nas variações do armazenamento de água, a influência dos grandes corpos d’água sobre a variabilidade espacial da precipitação, além da importância das várzeas da inundação e efeitos de remanso sobre a propagação das ondas de cheia Amazônicas. As condições hidrológicas iniciais, com destaque para as águas superficiais, mostraram dominar a previsibilidade hidrológica nos grandes rios amazônicos, tendo assim a precipitação no futuro um papel secundário. Portanto, afim de melhor estimar os estados hidrológicos, de forma pioneira, foi desenvolvido um esquema de assimilação de dados para um modelo hidrológicohidrodinâmico de larga escala para assimilar informações in situ e de altimetria por radar, cujo desempenho se mostrou satisfatório. Desenvolveu-se também um protótipo de sistema de previsão de vazões para a bacia Amazônica, baseado no modelo inicializado com condições iniciais ótimas do esquema de assimilação de dados e utilizando precipitação estimada por satélite disponível em tempo real. Os resultados foram promissores e o modelo foi capaz de prever vazões nos principais rios amazônicos com grande antecedência (~1 a 3 meses), antecipando, por exemplo, a grande seca de 2005. Estes resultados mostram o potencial da modelagem hidrológica de larga escala apoiada por informação de sensoriamento remoto na previsão de vazões com alta antecedência nas grandes bacias hidrográficas do mundo. / The Amazon basin is known as the world’s main hydrological system and by its important role in the earth system, carbon cycle and global climate. Recent anthropogenic pressure, such as deforestation, climate change and the construction of hydropower dams, together with increasing extreme floods and droughts, encourage the research on the hydrology of the Amazon basin. On the other hand, hydrological methods for modeling and remotely sensed observation are being developed, and can be used for this goal. This work aimed at understanding and forecasting the hydrology of the Amazon River basin. We developed and evaluated techniques for large scale hydrologic-hydrodynamic modeling, data assimilation of both in situ and remote sensing data and hydrological forecasting. By means of these techniques, we explored the functioning of the Amazon River basin, in terms of its physical processes and its hydrological predictability. We used the MGB-IPH large scale hydrologichydrodynamic model forced by satellite-based precipitation. The model had a good performance when extensively validated against in situ discharge and stage measurements and also remotely sensed data, including radar altimetry-based water levels, gravimetric-based terrestrial water storage and flood inundation extent. We showed that surface waters governs most of the terrestrial water storage changes, the influence of large water bodies on precipitation spatial variability and the importance of the floodplains and backwater effects on the routing of the Amazon floodwaves. Analyses showed the dominant role of hydrological initial conditions, mainly surface waters, on hydrological predictability on the main Amazon Rivers, while the knowledge of future precipitation may be secondary. Aiming at the optimal estimation of these hydrological states, we developed, for the first time, a data assimilation scheme for both gauged and satellite altimetry-based discharge and water levels into a large scale hydrologic-hydrodynamic model, and it showed a good performance. We also developed a forecast system prototype, where the model is based on initial conditions gathered by the data assimilation scheme and forced by satellite-based precipitation. Results are promising and the model was able to provide accurate discharge forecasts in the main Amazon rivers even for very large lead times (~1 to 3 months), predicting, for example, the historical 2005 drought. These results point to the potential of large scale hydrological models supported with remote sensing information for providing hydrological forecasts well in advance at world’s large rivers and poorly monitored regions.

Page generated in 0.053 seconds