• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 15
  • 15
  • 15
  • 12
  • 12
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efeito do controle de montante na previsão hidrológica de curto prazo com redes neurais : aplicação à bacia do Ijuí

Matos, Alex Bortolon de January 2012 (has links)
Neste trabalho foi avaliado o efeito do controle de montante em sub-bacias embutidas na previsão hidrológica de curto prazo, com a investigação conjunta de dois aspectos: variação da área controlada e a variação do detalhamento temporal dos dados de vazões de entrada do modelo. O local escolhido para essa pesquisa foi a bacia do rio Ijuí com exutório no posto fluviométrico da Ponte Mística e as suas sub-bacias embutidas de Santo Ângelo, Ponte Nova do Potiribu, Colônia Mousquer, Passo do Faxinal e Turcato. Os dados de vazão utilizados foram obtidos da Agência Nacional de Águas (ANA) e do projeto de monitoramento da bacia do Potiribu (Castro et al., 2010), enquanto que os dados de precipitação foram obtidos em Silva (2011), que calculou uma série histórica de precipitações médias de uma grade de chuvas interpoladas a partir dos dados de 65 postos pluviométricos da região. Para este estudo foram utilizados dados de 22/08/1989 à 01/06/1994 (1.743 dias). Esse período foi selecionado por ser o maior período com dados concomitantes em todos os postos fluviométricos. Os modelos escolhidos para esse estudo foram as redes neurais artificiais de múltiplas camadas, com utilização do algoritmo retropropagativo. As entradas nos modelos foram os dados de precipitação e as vazões diárias da bacia de Ponte Mística e de suas sub-bacias, e as saídas foram as vazões de Ponte Mística um dia à frente. Foram apresentadas oito alternativas de controle físico de montante. Também foram aplicadas, para cada uma das alternativas, componentes antecedentes, com a utilização dos dados de vazão com antecedência de 24h e 48h. A utilização de vazões horárias do Turcato foi comparada com uma alternativa que contempla o mesmo posto, mas com dados diários, para investigar se a utilização de dados com um maior detalhamento temporal pode produzir melhores resultados. Para a análise do desempenho da rede foi aplicado como estatística de qualidade o coeficiente de Nash-Sutcliffe (NS). A avaliação estatística apresentou bons resultados na previsão de vazão para todas as alternativas de controle, sendo o menor NS de 0,91 e o maior de 0,97. A utilização de um maior detalhamento temporal, com aplicação de vazões horárias, provocou uma redução no desempenho do modelo, com o NS caindo de 0,91 para 0,89. Observou-se também que, quanto maior a área controlada das bacias, melhores são os resultados para a previsão de vazão. A análise da influência de cada variável explicativa foi feita por um método apresentado por Maier e Dandy (1997), revelando-se um recurso valioso para a compreensão das relações de importância das variáveis e do funcionamento do sistema. As contribuições das vazões das bacias de montante foram sempre mais influentes do que as precipitações diárias sobre toda a bacia, sendo demonstrado que, neste sentido, mesmo uma bacia muito pequena pode ser importante para a previsão. Além disso, esta técnica revelou-se importante para auxiliar na identificação das defasagens que são mais importantes, e também revela que, mesmo componentes que apresentam menor influência, podem atuar como potencializadoras de outras variáveis ou componentes, cuja ação atua no sentido de incrementar o desempenho das previsões do modelo. / This study evaluated the effects of the amount of controlled area with sub-basins embedded for real time hydrologic forecasting. Two aspects were studied together: The variation in the amount of controlled area and the temporal variation of detail data flow model input. The site chosen for this research was the Ijuí river basin with outlet in the gaging station of Ponte Mística and its sub-basins, namely the gaging stations at Sant'Angelo, Ponte Nova do Potiribu, Colônia Mousquer, Passo do Faxinal and Turcato. The streamflow data used were obtained from the National Water Agency (ANA) and the monitoring project of the Potiribu basin (Castro et al., 2010), while precipitation data were obtained in Silva (2011), who calculated the series of average precipitations from a grid of rainfalls resulting from the data interpolation of 65 raingauge stations in the region. For this study we used data from 22/08/1989 to 01/06/1994 (1.743 days). This period was selected because it is the longest period with complete data in all fluviometric stations. The models chosen for this study were the artificial neural networks of multiple layers, with training by the backpropagation algorithm. The entries of the models were the daily rainfall data and the streamflow of Ponte Mística basin and its sub-basins, and the outputs were the streamflows of the gaging station of Ponte Mística one day after. Eight alternatives of upstream control were presented. There were also applied, to each of these alternatives, the antecedent components, namely, the previous streamflow data of 24h and 48h. The model which uses hourly streamflows of Turcato was compared with an alternative that makes the same job, but with daily data, to investigate if the former, with the use of data with greater temporal detail, can produce better results. For the analysis of network performances it was applied the Nash-Sutcliffe coefficient (NS). Statistical evaluation showed good results in predicting streamflow for all control alternatives, being 0.91 and 0.97 the lowest and the highest NS, respectively. Using a more detailed temporal, applying hourly streamflows, caused a reduction in the performance of the model, with the NS falling from 0.91 to 0.89. It was also observed that the larger the controlled basins area, the better the results for predicting flow. The analysis of the influence of each explanatory variable was made by a method developed by Maier and Dandy (1997), proved to be a valuable resource for understanding the importance of relationships of variables and operating system. The contributions of flow from upstream basins have revealed always more influential to the forecasting than the daily precipitation over the whole basin, and demonstrated that, in this sense, even a very small basin may be important for forecasting. Furthermore, this technique proved important to help identify the more important lags, and also reveals that, even components that have less influence, can act for potentiating the other variables or components whose actions acts to increase the performance of the model predictions.
2

Efeito do controle de montante na previsão hidrológica de curto prazo com redes neurais : aplicação à bacia do Ijuí

Matos, Alex Bortolon de January 2012 (has links)
Neste trabalho foi avaliado o efeito do controle de montante em sub-bacias embutidas na previsão hidrológica de curto prazo, com a investigação conjunta de dois aspectos: variação da área controlada e a variação do detalhamento temporal dos dados de vazões de entrada do modelo. O local escolhido para essa pesquisa foi a bacia do rio Ijuí com exutório no posto fluviométrico da Ponte Mística e as suas sub-bacias embutidas de Santo Ângelo, Ponte Nova do Potiribu, Colônia Mousquer, Passo do Faxinal e Turcato. Os dados de vazão utilizados foram obtidos da Agência Nacional de Águas (ANA) e do projeto de monitoramento da bacia do Potiribu (Castro et al., 2010), enquanto que os dados de precipitação foram obtidos em Silva (2011), que calculou uma série histórica de precipitações médias de uma grade de chuvas interpoladas a partir dos dados de 65 postos pluviométricos da região. Para este estudo foram utilizados dados de 22/08/1989 à 01/06/1994 (1.743 dias). Esse período foi selecionado por ser o maior período com dados concomitantes em todos os postos fluviométricos. Os modelos escolhidos para esse estudo foram as redes neurais artificiais de múltiplas camadas, com utilização do algoritmo retropropagativo. As entradas nos modelos foram os dados de precipitação e as vazões diárias da bacia de Ponte Mística e de suas sub-bacias, e as saídas foram as vazões de Ponte Mística um dia à frente. Foram apresentadas oito alternativas de controle físico de montante. Também foram aplicadas, para cada uma das alternativas, componentes antecedentes, com a utilização dos dados de vazão com antecedência de 24h e 48h. A utilização de vazões horárias do Turcato foi comparada com uma alternativa que contempla o mesmo posto, mas com dados diários, para investigar se a utilização de dados com um maior detalhamento temporal pode produzir melhores resultados. Para a análise do desempenho da rede foi aplicado como estatística de qualidade o coeficiente de Nash-Sutcliffe (NS). A avaliação estatística apresentou bons resultados na previsão de vazão para todas as alternativas de controle, sendo o menor NS de 0,91 e o maior de 0,97. A utilização de um maior detalhamento temporal, com aplicação de vazões horárias, provocou uma redução no desempenho do modelo, com o NS caindo de 0,91 para 0,89. Observou-se também que, quanto maior a área controlada das bacias, melhores são os resultados para a previsão de vazão. A análise da influência de cada variável explicativa foi feita por um método apresentado por Maier e Dandy (1997), revelando-se um recurso valioso para a compreensão das relações de importância das variáveis e do funcionamento do sistema. As contribuições das vazões das bacias de montante foram sempre mais influentes do que as precipitações diárias sobre toda a bacia, sendo demonstrado que, neste sentido, mesmo uma bacia muito pequena pode ser importante para a previsão. Além disso, esta técnica revelou-se importante para auxiliar na identificação das defasagens que são mais importantes, e também revela que, mesmo componentes que apresentam menor influência, podem atuar como potencializadoras de outras variáveis ou componentes, cuja ação atua no sentido de incrementar o desempenho das previsões do modelo. / This study evaluated the effects of the amount of controlled area with sub-basins embedded for real time hydrologic forecasting. Two aspects were studied together: The variation in the amount of controlled area and the temporal variation of detail data flow model input. The site chosen for this research was the Ijuí river basin with outlet in the gaging station of Ponte Mística and its sub-basins, namely the gaging stations at Sant'Angelo, Ponte Nova do Potiribu, Colônia Mousquer, Passo do Faxinal and Turcato. The streamflow data used were obtained from the National Water Agency (ANA) and the monitoring project of the Potiribu basin (Castro et al., 2010), while precipitation data were obtained in Silva (2011), who calculated the series of average precipitations from a grid of rainfalls resulting from the data interpolation of 65 raingauge stations in the region. For this study we used data from 22/08/1989 to 01/06/1994 (1.743 days). This period was selected because it is the longest period with complete data in all fluviometric stations. The models chosen for this study were the artificial neural networks of multiple layers, with training by the backpropagation algorithm. The entries of the models were the daily rainfall data and the streamflow of Ponte Mística basin and its sub-basins, and the outputs were the streamflows of the gaging station of Ponte Mística one day after. Eight alternatives of upstream control were presented. There were also applied, to each of these alternatives, the antecedent components, namely, the previous streamflow data of 24h and 48h. The model which uses hourly streamflows of Turcato was compared with an alternative that makes the same job, but with daily data, to investigate if the former, with the use of data with greater temporal detail, can produce better results. For the analysis of network performances it was applied the Nash-Sutcliffe coefficient (NS). Statistical evaluation showed good results in predicting streamflow for all control alternatives, being 0.91 and 0.97 the lowest and the highest NS, respectively. Using a more detailed temporal, applying hourly streamflows, caused a reduction in the performance of the model, with the NS falling from 0.91 to 0.89. It was also observed that the larger the controlled basins area, the better the results for predicting flow. The analysis of the influence of each explanatory variable was made by a method developed by Maier and Dandy (1997), proved to be a valuable resource for understanding the importance of relationships of variables and operating system. The contributions of flow from upstream basins have revealed always more influential to the forecasting than the daily precipitation over the whole basin, and demonstrated that, in this sense, even a very small basin may be important for forecasting. Furthermore, this technique proved important to help identify the more important lags, and also reveals that, even components that have less influence, can act for potentiating the other variables or components whose actions acts to increase the performance of the model predictions.
3

Efeito do controle de montante na previsão hidrológica de curto prazo com redes neurais : aplicação à bacia do Ijuí

Matos, Alex Bortolon de January 2012 (has links)
Neste trabalho foi avaliado o efeito do controle de montante em sub-bacias embutidas na previsão hidrológica de curto prazo, com a investigação conjunta de dois aspectos: variação da área controlada e a variação do detalhamento temporal dos dados de vazões de entrada do modelo. O local escolhido para essa pesquisa foi a bacia do rio Ijuí com exutório no posto fluviométrico da Ponte Mística e as suas sub-bacias embutidas de Santo Ângelo, Ponte Nova do Potiribu, Colônia Mousquer, Passo do Faxinal e Turcato. Os dados de vazão utilizados foram obtidos da Agência Nacional de Águas (ANA) e do projeto de monitoramento da bacia do Potiribu (Castro et al., 2010), enquanto que os dados de precipitação foram obtidos em Silva (2011), que calculou uma série histórica de precipitações médias de uma grade de chuvas interpoladas a partir dos dados de 65 postos pluviométricos da região. Para este estudo foram utilizados dados de 22/08/1989 à 01/06/1994 (1.743 dias). Esse período foi selecionado por ser o maior período com dados concomitantes em todos os postos fluviométricos. Os modelos escolhidos para esse estudo foram as redes neurais artificiais de múltiplas camadas, com utilização do algoritmo retropropagativo. As entradas nos modelos foram os dados de precipitação e as vazões diárias da bacia de Ponte Mística e de suas sub-bacias, e as saídas foram as vazões de Ponte Mística um dia à frente. Foram apresentadas oito alternativas de controle físico de montante. Também foram aplicadas, para cada uma das alternativas, componentes antecedentes, com a utilização dos dados de vazão com antecedência de 24h e 48h. A utilização de vazões horárias do Turcato foi comparada com uma alternativa que contempla o mesmo posto, mas com dados diários, para investigar se a utilização de dados com um maior detalhamento temporal pode produzir melhores resultados. Para a análise do desempenho da rede foi aplicado como estatística de qualidade o coeficiente de Nash-Sutcliffe (NS). A avaliação estatística apresentou bons resultados na previsão de vazão para todas as alternativas de controle, sendo o menor NS de 0,91 e o maior de 0,97. A utilização de um maior detalhamento temporal, com aplicação de vazões horárias, provocou uma redução no desempenho do modelo, com o NS caindo de 0,91 para 0,89. Observou-se também que, quanto maior a área controlada das bacias, melhores são os resultados para a previsão de vazão. A análise da influência de cada variável explicativa foi feita por um método apresentado por Maier e Dandy (1997), revelando-se um recurso valioso para a compreensão das relações de importância das variáveis e do funcionamento do sistema. As contribuições das vazões das bacias de montante foram sempre mais influentes do que as precipitações diárias sobre toda a bacia, sendo demonstrado que, neste sentido, mesmo uma bacia muito pequena pode ser importante para a previsão. Além disso, esta técnica revelou-se importante para auxiliar na identificação das defasagens que são mais importantes, e também revela que, mesmo componentes que apresentam menor influência, podem atuar como potencializadoras de outras variáveis ou componentes, cuja ação atua no sentido de incrementar o desempenho das previsões do modelo. / This study evaluated the effects of the amount of controlled area with sub-basins embedded for real time hydrologic forecasting. Two aspects were studied together: The variation in the amount of controlled area and the temporal variation of detail data flow model input. The site chosen for this research was the Ijuí river basin with outlet in the gaging station of Ponte Mística and its sub-basins, namely the gaging stations at Sant'Angelo, Ponte Nova do Potiribu, Colônia Mousquer, Passo do Faxinal and Turcato. The streamflow data used were obtained from the National Water Agency (ANA) and the monitoring project of the Potiribu basin (Castro et al., 2010), while precipitation data were obtained in Silva (2011), who calculated the series of average precipitations from a grid of rainfalls resulting from the data interpolation of 65 raingauge stations in the region. For this study we used data from 22/08/1989 to 01/06/1994 (1.743 days). This period was selected because it is the longest period with complete data in all fluviometric stations. The models chosen for this study were the artificial neural networks of multiple layers, with training by the backpropagation algorithm. The entries of the models were the daily rainfall data and the streamflow of Ponte Mística basin and its sub-basins, and the outputs were the streamflows of the gaging station of Ponte Mística one day after. Eight alternatives of upstream control were presented. There were also applied, to each of these alternatives, the antecedent components, namely, the previous streamflow data of 24h and 48h. The model which uses hourly streamflows of Turcato was compared with an alternative that makes the same job, but with daily data, to investigate if the former, with the use of data with greater temporal detail, can produce better results. For the analysis of network performances it was applied the Nash-Sutcliffe coefficient (NS). Statistical evaluation showed good results in predicting streamflow for all control alternatives, being 0.91 and 0.97 the lowest and the highest NS, respectively. Using a more detailed temporal, applying hourly streamflows, caused a reduction in the performance of the model, with the NS falling from 0.91 to 0.89. It was also observed that the larger the controlled basins area, the better the results for predicting flow. The analysis of the influence of each explanatory variable was made by a method developed by Maier and Dandy (1997), proved to be a valuable resource for understanding the importance of relationships of variables and operating system. The contributions of flow from upstream basins have revealed always more influential to the forecasting than the daily precipitation over the whole basin, and demonstrated that, in this sense, even a very small basin may be important for forecasting. Furthermore, this technique proved important to help identify the more important lags, and also reveals that, even components that have less influence, can act for potentiating the other variables or components whose actions acts to increase the performance of the model predictions.
4

Previsão de longo prazo de níveis no sistema hidrológico do TAIM

Galdino, Carlos Henrique Pereira Assunção January 2015 (has links)
O crescimento populacional e a degradação dos corpos d’água vêm exercendo pressão à agricultura moderna, a proporcionar respostas mais eficientes quanto ao uso racional da água. Para uma melhor utilização dos recursos hídricos, faz-se necessário compreender o movimento da água na natureza, onde o conhecimento prévio dos fenômenos atmosféricos constitui uma importante ferramenta no planejamento de atividades que utilizam os recursos hídricos como fonte primária de abastecimento. Nesse trabalho foram realizadas previsões de longo prazo com antecedência de sete meses e intervalo de tempo mensal de níveis no Sistema Hidrológico do Taim, utilizando previsões de precipitação geradas por um modelo de circulação global. Para realizar as previsões foi elaborado um modelo hidrológico empírico de regressão, onde foram utilizadas técnicas estatísticas de análise e manipulação de séries históricas para correlacionar os dados disponíveis aos níveis (volumes) de água no banhado. Partindo do pressuposto que as previsões meteorológicas são a maior fonte de incerteza na previsão hidrológica, foi utilizada a técnica de previsão por conjunto (ensemble) e dados do modelo COLA, com 30 membros, para quantificar as incertezas envolvidas. Foi elaborado um algoritmo para gerar todas as possibilidades de regressão linear múltipla com os dados disponíveis, onde oito equações candidatas foram selecionadas para realizar as previsões. Numa análise preliminar dos dados de entrada de precipitações previstas foi observado que o modelo de circulação global não representou os extremos observados de forma satisfatória, sendo executado um processo de remoção do viés. O modelo de empírico de simulação foi posteriormente executado em modo continuo, gerando previsões de longo prazo de níveis para os próximos sete meses, para cada mês no período de junho/2004 a dezembro/2011. Os resultados obtidos mostraram que a metodologia utilizada obteve bons resultados, com desempenho satisfatórios até o terceiro mês, decaindo seu desempenho nos meses posteriores, mas configurando-se em uma ferramenta para auxílio à gestão dos recursos hídricos do local de estudo. / Population growth and degradation of water bodies have been pressuring modern agriculture, to provide more efficient responses about the rational use of water. For a better use of water resources, it is necessary to understand the movement of water in nature, where prior knowledge of atmospheric phenomena is an important tool in planning activities that use water as the primary source of supply. In this study were performed long-term forecasts of water levels (seven months of horizon, monthly time-step) in the Hydrological System Taim, using rainfall forecasts generated by a global circulation model as input. To perform predictions was developed an empirical hydrological regression model. This model was developed based on statistical techniques of analysis and manipulation of historical data to correlate the input data available to the levels (volume) of water in a wetland. Assuming that weather forecasts are a major source of uncertainty in hydrological forecasting, we used an ensemble forecast from COLA 2.2 with 30 members to quantify the uncertainties involved. An algorithm was developed to generate all the multiple linear regression models with the available data, where eight candidates equations were selected for hydrological forecasting. In a preliminary analysis of the precipitation forecast was observed that the global circulation model did not achieve a good representation of extremes values, thus a process of bias removal was carried out. Then the empirical model was used to generate water levels forecast for the next seven months, in each month of the period june/2004 to december/2011. The results showed that the methodology used has a satisfactory performance until the lead time three (third month in the future) where the performance starts to show lower values. Beside the sharply lost of performance in the last lead times, the model is a support tool that can help the decision making in the management of water resources for the study case.
5

Previsão por conjunto de vazões afluentes a reservatórios em grandes bacias hidrográficas brasileiras

Fan, Fernando Mainardi January 2015 (has links)
A previsão com antecedência de curto e médio prazo da vazão em diferentes locais de bacias hidrográficas geralmente é benéfica ao permitir uma resposta antecipada a eventos hidrológicos como cheias, e a operação mais eficiente de obras hidráulicas como barragens. Atualmente, cada vez mais se tem reconhecida a importância da inclusão das incertezas na geração de previsões hidrológicas, feita através de previsões por conjunto (ou ensemble). Neste tipo de previsão são feitas inferências sobre cenários possíveis futuros através da consideração de, por exemplo, múltiplas trajetórias possíveis dos estados da atmosfera, que ao serem aplicadas em um modelo hidrológico resultam em distribuições de trajetórias de vazões. Várias aplicações recentes tem sugerido a possibilidade da tomada de melhores decisões para o futuro quando fundamentadas neste conhecimento das incertezas. No Brasil, um uso predominante de previsões hidrológicas é na operação de reservatórios de usinas hidroelétricas, que constituem a maior fonte de energia do País. As previsões nestes casos são utilizadas tanto para a operação normal do sistema nacional, feita de forma centralizada, como para a operação local das usinas em casos de cheia, onde é necessário velar pela segurança da barragem e pela atenuação de impactos a jusante e/ou a montante dos barramentos. Contudo, a forma como as previsões de vazão são geradas e usadas no cenário nacional não são baseadas em técnicas de previsão por conjunto, onde a própria pesquisa local sobre os potenciais benefícios destas formas de geração de previsões pode ser classificada como incipiente. Assim, o objetivo principal deste estudo é investigar benefícios em termos de qualidade e persistência do uso de previsões de afluência por conjunto para reservatórios em grandes bacias hidrográficas brasileiras em curto e médio prazo. Para cumprir com estes objetivos foram propostos ensaios de previsão de vazão por conjunto para três bacias hidrográficas brasileiras: Alto São Francisco, Doce, e Tocantins. O modelo hidrológico MGBIPH foi aplicado para a execução de previsões retroativas (hindcastings) alimentado por dados de chuva provindos de três diferentes sistemas de previsão meteorológica por conjunto (ECMWF-pf, GEFS, e CPTEC-pf) e mais uma previsão determinística de referência (ECMWF-fc), todos disponíveis na base de dados denominada TIGGE. De uma forma geral, as previsões por conjunto, principalmente dos modelos ECMWF-pf e GEFS, se mostraram superiores em termos de qualidade e persistência na comparação com a previsão determinística. E o uso do Super Ensemble, formado pela combinação dos três modelos mostrou-se uma alternativa entre as melhores testadas, principalmente por ser também uma estratégia robusta. Para uma estratégia de defesa contra cheias, as análises indicam benefícios para a consideração dos membros superiores dos conjuntos, e já para uma estratégia de operação de reservatórios essa visão pode ser mais focada em vazões médias, as quais podem conter algum viés. Já a comparação entre as bacias mostrou que resultados não podem ser transportados de um local para outro, apesar de estarem no mesmo clima. Em relação às incertezas, notou-se que a modelagem hidrológica amplifica as incertezas na previsão na medida em que os estados do modelo da grande bacia evoluem. De qualquer forma, acreditase que os resultados mostram que mais investimentos em técnicas de previsão por conjunto e suas aplicações são um caminho a ser seguido para ampliar os benefícios do uso de previsões hidrológicas. / Short to medium-term streamflow forecasts at different locations in a watershed are generally beneficial to allow an early response to hydrological events such as floods, and more efficient operation of hydraulic structures such as dams. Currently, an increasingly recognition has been given to the including of uncertainties in the generation of hydrological forecasts, what is usually made producting the so called Ensemble Forecast. In this kind of forecast inferences about possible future scenarios are made by considering, for example, multiple possible trajectories of the atmospheric states, which when applied to a hydrological model results in streamflow trajectories distributions. Several recent applications suggested the possibility of better decisions making based on this uncertainties knowledge. In Brazil, a predominant use of hydrological forecasts is for hydropower reservoirs operation, which are the largest source of energy for the country. Future inflows estimates in these cases are used either for normal operation of the national system, done centrally, as for local operation of the dams in cases of floods, where it is necessary to ensure the dam safety and the mitigation of impacts downstream and/or upstream. However, the currently technique used to generate the operational forecasts is not based on ensembles, and the Brazilian local research on the potential benefits of these forms of forecasts production can be classified as incipient. Thus, the aim of this Thesis was to investigate benefits in terms of quality and persistence of using short to medium-term ensemble inflow forecast for reservoirs located on large Brazilian river basins. To fulfill these objectives streamflow forecast tests have been proposed for three Brazilian river basins: Alto San Francisco, Doce, and Tocantins. The hydrological model MGB-IPH was applied to perform retroactive forecasts (hindcastings) within a period of tests forced by rainfall data from three different ensemble weather forecasting systems (ECMWFpf, GEFs, and CPTEC-pf) and a deterministic prediction reference (ECMWF-fc), all available in the TIGGE archive. In general, the ensemble predictions, especially from ECMWF-pf and GEFs models, were superior in quality and persistence in comparison to the deterministic reference. And the use of the Super ensemble composed by the combination of the three ensemble models was shown to be among the results, and also a robust strategy. For a flood protection strategy, the analyzes indicate benefits in the consideration of the upper bounds of the ensembles, and for a reservoir operation strategy that vision could be more focused on average flow rates, which may contain some verified bias. The comparison between the basins results showed that one can not transport results and considerations from one location to another, despite being in the same climate region. Regarding uncertainties, it was noted that hydrological modeling amplifies the uncertainty in the forecasts, in some extent due to the large basin evolution of state variables. Anyway, it is believed that more investments in ensemble forecasting techniques and its applications shown to be a good way to make better use of forecasts.
6

Previsão de longo prazo de níveis no sistema hidrológico do TAIM

Galdino, Carlos Henrique Pereira Assunção January 2015 (has links)
O crescimento populacional e a degradação dos corpos d’água vêm exercendo pressão à agricultura moderna, a proporcionar respostas mais eficientes quanto ao uso racional da água. Para uma melhor utilização dos recursos hídricos, faz-se necessário compreender o movimento da água na natureza, onde o conhecimento prévio dos fenômenos atmosféricos constitui uma importante ferramenta no planejamento de atividades que utilizam os recursos hídricos como fonte primária de abastecimento. Nesse trabalho foram realizadas previsões de longo prazo com antecedência de sete meses e intervalo de tempo mensal de níveis no Sistema Hidrológico do Taim, utilizando previsões de precipitação geradas por um modelo de circulação global. Para realizar as previsões foi elaborado um modelo hidrológico empírico de regressão, onde foram utilizadas técnicas estatísticas de análise e manipulação de séries históricas para correlacionar os dados disponíveis aos níveis (volumes) de água no banhado. Partindo do pressuposto que as previsões meteorológicas são a maior fonte de incerteza na previsão hidrológica, foi utilizada a técnica de previsão por conjunto (ensemble) e dados do modelo COLA, com 30 membros, para quantificar as incertezas envolvidas. Foi elaborado um algoritmo para gerar todas as possibilidades de regressão linear múltipla com os dados disponíveis, onde oito equações candidatas foram selecionadas para realizar as previsões. Numa análise preliminar dos dados de entrada de precipitações previstas foi observado que o modelo de circulação global não representou os extremos observados de forma satisfatória, sendo executado um processo de remoção do viés. O modelo de empírico de simulação foi posteriormente executado em modo continuo, gerando previsões de longo prazo de níveis para os próximos sete meses, para cada mês no período de junho/2004 a dezembro/2011. Os resultados obtidos mostraram que a metodologia utilizada obteve bons resultados, com desempenho satisfatórios até o terceiro mês, decaindo seu desempenho nos meses posteriores, mas configurando-se em uma ferramenta para auxílio à gestão dos recursos hídricos do local de estudo. / Population growth and degradation of water bodies have been pressuring modern agriculture, to provide more efficient responses about the rational use of water. For a better use of water resources, it is necessary to understand the movement of water in nature, where prior knowledge of atmospheric phenomena is an important tool in planning activities that use water as the primary source of supply. In this study were performed long-term forecasts of water levels (seven months of horizon, monthly time-step) in the Hydrological System Taim, using rainfall forecasts generated by a global circulation model as input. To perform predictions was developed an empirical hydrological regression model. This model was developed based on statistical techniques of analysis and manipulation of historical data to correlate the input data available to the levels (volume) of water in a wetland. Assuming that weather forecasts are a major source of uncertainty in hydrological forecasting, we used an ensemble forecast from COLA 2.2 with 30 members to quantify the uncertainties involved. An algorithm was developed to generate all the multiple linear regression models with the available data, where eight candidates equations were selected for hydrological forecasting. In a preliminary analysis of the precipitation forecast was observed that the global circulation model did not achieve a good representation of extremes values, thus a process of bias removal was carried out. Then the empirical model was used to generate water levels forecast for the next seven months, in each month of the period june/2004 to december/2011. The results showed that the methodology used has a satisfactory performance until the lead time three (third month in the future) where the performance starts to show lower values. Beside the sharply lost of performance in the last lead times, the model is a support tool that can help the decision making in the management of water resources for the study case.
7

Previsão de longo prazo de níveis no sistema hidrológico do TAIM

Galdino, Carlos Henrique Pereira Assunção January 2015 (has links)
O crescimento populacional e a degradação dos corpos d’água vêm exercendo pressão à agricultura moderna, a proporcionar respostas mais eficientes quanto ao uso racional da água. Para uma melhor utilização dos recursos hídricos, faz-se necessário compreender o movimento da água na natureza, onde o conhecimento prévio dos fenômenos atmosféricos constitui uma importante ferramenta no planejamento de atividades que utilizam os recursos hídricos como fonte primária de abastecimento. Nesse trabalho foram realizadas previsões de longo prazo com antecedência de sete meses e intervalo de tempo mensal de níveis no Sistema Hidrológico do Taim, utilizando previsões de precipitação geradas por um modelo de circulação global. Para realizar as previsões foi elaborado um modelo hidrológico empírico de regressão, onde foram utilizadas técnicas estatísticas de análise e manipulação de séries históricas para correlacionar os dados disponíveis aos níveis (volumes) de água no banhado. Partindo do pressuposto que as previsões meteorológicas são a maior fonte de incerteza na previsão hidrológica, foi utilizada a técnica de previsão por conjunto (ensemble) e dados do modelo COLA, com 30 membros, para quantificar as incertezas envolvidas. Foi elaborado um algoritmo para gerar todas as possibilidades de regressão linear múltipla com os dados disponíveis, onde oito equações candidatas foram selecionadas para realizar as previsões. Numa análise preliminar dos dados de entrada de precipitações previstas foi observado que o modelo de circulação global não representou os extremos observados de forma satisfatória, sendo executado um processo de remoção do viés. O modelo de empírico de simulação foi posteriormente executado em modo continuo, gerando previsões de longo prazo de níveis para os próximos sete meses, para cada mês no período de junho/2004 a dezembro/2011. Os resultados obtidos mostraram que a metodologia utilizada obteve bons resultados, com desempenho satisfatórios até o terceiro mês, decaindo seu desempenho nos meses posteriores, mas configurando-se em uma ferramenta para auxílio à gestão dos recursos hídricos do local de estudo. / Population growth and degradation of water bodies have been pressuring modern agriculture, to provide more efficient responses about the rational use of water. For a better use of water resources, it is necessary to understand the movement of water in nature, where prior knowledge of atmospheric phenomena is an important tool in planning activities that use water as the primary source of supply. In this study were performed long-term forecasts of water levels (seven months of horizon, monthly time-step) in the Hydrological System Taim, using rainfall forecasts generated by a global circulation model as input. To perform predictions was developed an empirical hydrological regression model. This model was developed based on statistical techniques of analysis and manipulation of historical data to correlate the input data available to the levels (volume) of water in a wetland. Assuming that weather forecasts are a major source of uncertainty in hydrological forecasting, we used an ensemble forecast from COLA 2.2 with 30 members to quantify the uncertainties involved. An algorithm was developed to generate all the multiple linear regression models with the available data, where eight candidates equations were selected for hydrological forecasting. In a preliminary analysis of the precipitation forecast was observed that the global circulation model did not achieve a good representation of extremes values, thus a process of bias removal was carried out. Then the empirical model was used to generate water levels forecast for the next seven months, in each month of the period june/2004 to december/2011. The results showed that the methodology used has a satisfactory performance until the lead time three (third month in the future) where the performance starts to show lower values. Beside the sharply lost of performance in the last lead times, the model is a support tool that can help the decision making in the management of water resources for the study case.
8

Previsão por conjunto de vazões afluentes a reservatórios em grandes bacias hidrográficas brasileiras

Fan, Fernando Mainardi January 2015 (has links)
A previsão com antecedência de curto e médio prazo da vazão em diferentes locais de bacias hidrográficas geralmente é benéfica ao permitir uma resposta antecipada a eventos hidrológicos como cheias, e a operação mais eficiente de obras hidráulicas como barragens. Atualmente, cada vez mais se tem reconhecida a importância da inclusão das incertezas na geração de previsões hidrológicas, feita através de previsões por conjunto (ou ensemble). Neste tipo de previsão são feitas inferências sobre cenários possíveis futuros através da consideração de, por exemplo, múltiplas trajetórias possíveis dos estados da atmosfera, que ao serem aplicadas em um modelo hidrológico resultam em distribuições de trajetórias de vazões. Várias aplicações recentes tem sugerido a possibilidade da tomada de melhores decisões para o futuro quando fundamentadas neste conhecimento das incertezas. No Brasil, um uso predominante de previsões hidrológicas é na operação de reservatórios de usinas hidroelétricas, que constituem a maior fonte de energia do País. As previsões nestes casos são utilizadas tanto para a operação normal do sistema nacional, feita de forma centralizada, como para a operação local das usinas em casos de cheia, onde é necessário velar pela segurança da barragem e pela atenuação de impactos a jusante e/ou a montante dos barramentos. Contudo, a forma como as previsões de vazão são geradas e usadas no cenário nacional não são baseadas em técnicas de previsão por conjunto, onde a própria pesquisa local sobre os potenciais benefícios destas formas de geração de previsões pode ser classificada como incipiente. Assim, o objetivo principal deste estudo é investigar benefícios em termos de qualidade e persistência do uso de previsões de afluência por conjunto para reservatórios em grandes bacias hidrográficas brasileiras em curto e médio prazo. Para cumprir com estes objetivos foram propostos ensaios de previsão de vazão por conjunto para três bacias hidrográficas brasileiras: Alto São Francisco, Doce, e Tocantins. O modelo hidrológico MGBIPH foi aplicado para a execução de previsões retroativas (hindcastings) alimentado por dados de chuva provindos de três diferentes sistemas de previsão meteorológica por conjunto (ECMWF-pf, GEFS, e CPTEC-pf) e mais uma previsão determinística de referência (ECMWF-fc), todos disponíveis na base de dados denominada TIGGE. De uma forma geral, as previsões por conjunto, principalmente dos modelos ECMWF-pf e GEFS, se mostraram superiores em termos de qualidade e persistência na comparação com a previsão determinística. E o uso do Super Ensemble, formado pela combinação dos três modelos mostrou-se uma alternativa entre as melhores testadas, principalmente por ser também uma estratégia robusta. Para uma estratégia de defesa contra cheias, as análises indicam benefícios para a consideração dos membros superiores dos conjuntos, e já para uma estratégia de operação de reservatórios essa visão pode ser mais focada em vazões médias, as quais podem conter algum viés. Já a comparação entre as bacias mostrou que resultados não podem ser transportados de um local para outro, apesar de estarem no mesmo clima. Em relação às incertezas, notou-se que a modelagem hidrológica amplifica as incertezas na previsão na medida em que os estados do modelo da grande bacia evoluem. De qualquer forma, acreditase que os resultados mostram que mais investimentos em técnicas de previsão por conjunto e suas aplicações são um caminho a ser seguido para ampliar os benefícios do uso de previsões hidrológicas. / Short to medium-term streamflow forecasts at different locations in a watershed are generally beneficial to allow an early response to hydrological events such as floods, and more efficient operation of hydraulic structures such as dams. Currently, an increasingly recognition has been given to the including of uncertainties in the generation of hydrological forecasts, what is usually made producting the so called Ensemble Forecast. In this kind of forecast inferences about possible future scenarios are made by considering, for example, multiple possible trajectories of the atmospheric states, which when applied to a hydrological model results in streamflow trajectories distributions. Several recent applications suggested the possibility of better decisions making based on this uncertainties knowledge. In Brazil, a predominant use of hydrological forecasts is for hydropower reservoirs operation, which are the largest source of energy for the country. Future inflows estimates in these cases are used either for normal operation of the national system, done centrally, as for local operation of the dams in cases of floods, where it is necessary to ensure the dam safety and the mitigation of impacts downstream and/or upstream. However, the currently technique used to generate the operational forecasts is not based on ensembles, and the Brazilian local research on the potential benefits of these forms of forecasts production can be classified as incipient. Thus, the aim of this Thesis was to investigate benefits in terms of quality and persistence of using short to medium-term ensemble inflow forecast for reservoirs located on large Brazilian river basins. To fulfill these objectives streamflow forecast tests have been proposed for three Brazilian river basins: Alto San Francisco, Doce, and Tocantins. The hydrological model MGB-IPH was applied to perform retroactive forecasts (hindcastings) within a period of tests forced by rainfall data from three different ensemble weather forecasting systems (ECMWFpf, GEFs, and CPTEC-pf) and a deterministic prediction reference (ECMWF-fc), all available in the TIGGE archive. In general, the ensemble predictions, especially from ECMWF-pf and GEFs models, were superior in quality and persistence in comparison to the deterministic reference. And the use of the Super ensemble composed by the combination of the three ensemble models was shown to be among the results, and also a robust strategy. For a flood protection strategy, the analyzes indicate benefits in the consideration of the upper bounds of the ensembles, and for a reservoir operation strategy that vision could be more focused on average flow rates, which may contain some verified bias. The comparison between the basins results showed that one can not transport results and considerations from one location to another, despite being in the same climate region. Regarding uncertainties, it was noted that hydrological modeling amplifies the uncertainty in the forecasts, in some extent due to the large basin evolution of state variables. Anyway, it is believed that more investments in ensemble forecasting techniques and its applications shown to be a good way to make better use of forecasts.
9

Previsão por conjunto de vazões afluentes a reservatórios em grandes bacias hidrográficas brasileiras

Fan, Fernando Mainardi January 2015 (has links)
A previsão com antecedência de curto e médio prazo da vazão em diferentes locais de bacias hidrográficas geralmente é benéfica ao permitir uma resposta antecipada a eventos hidrológicos como cheias, e a operação mais eficiente de obras hidráulicas como barragens. Atualmente, cada vez mais se tem reconhecida a importância da inclusão das incertezas na geração de previsões hidrológicas, feita através de previsões por conjunto (ou ensemble). Neste tipo de previsão são feitas inferências sobre cenários possíveis futuros através da consideração de, por exemplo, múltiplas trajetórias possíveis dos estados da atmosfera, que ao serem aplicadas em um modelo hidrológico resultam em distribuições de trajetórias de vazões. Várias aplicações recentes tem sugerido a possibilidade da tomada de melhores decisões para o futuro quando fundamentadas neste conhecimento das incertezas. No Brasil, um uso predominante de previsões hidrológicas é na operação de reservatórios de usinas hidroelétricas, que constituem a maior fonte de energia do País. As previsões nestes casos são utilizadas tanto para a operação normal do sistema nacional, feita de forma centralizada, como para a operação local das usinas em casos de cheia, onde é necessário velar pela segurança da barragem e pela atenuação de impactos a jusante e/ou a montante dos barramentos. Contudo, a forma como as previsões de vazão são geradas e usadas no cenário nacional não são baseadas em técnicas de previsão por conjunto, onde a própria pesquisa local sobre os potenciais benefícios destas formas de geração de previsões pode ser classificada como incipiente. Assim, o objetivo principal deste estudo é investigar benefícios em termos de qualidade e persistência do uso de previsões de afluência por conjunto para reservatórios em grandes bacias hidrográficas brasileiras em curto e médio prazo. Para cumprir com estes objetivos foram propostos ensaios de previsão de vazão por conjunto para três bacias hidrográficas brasileiras: Alto São Francisco, Doce, e Tocantins. O modelo hidrológico MGBIPH foi aplicado para a execução de previsões retroativas (hindcastings) alimentado por dados de chuva provindos de três diferentes sistemas de previsão meteorológica por conjunto (ECMWF-pf, GEFS, e CPTEC-pf) e mais uma previsão determinística de referência (ECMWF-fc), todos disponíveis na base de dados denominada TIGGE. De uma forma geral, as previsões por conjunto, principalmente dos modelos ECMWF-pf e GEFS, se mostraram superiores em termos de qualidade e persistência na comparação com a previsão determinística. E o uso do Super Ensemble, formado pela combinação dos três modelos mostrou-se uma alternativa entre as melhores testadas, principalmente por ser também uma estratégia robusta. Para uma estratégia de defesa contra cheias, as análises indicam benefícios para a consideração dos membros superiores dos conjuntos, e já para uma estratégia de operação de reservatórios essa visão pode ser mais focada em vazões médias, as quais podem conter algum viés. Já a comparação entre as bacias mostrou que resultados não podem ser transportados de um local para outro, apesar de estarem no mesmo clima. Em relação às incertezas, notou-se que a modelagem hidrológica amplifica as incertezas na previsão na medida em que os estados do modelo da grande bacia evoluem. De qualquer forma, acreditase que os resultados mostram que mais investimentos em técnicas de previsão por conjunto e suas aplicações são um caminho a ser seguido para ampliar os benefícios do uso de previsões hidrológicas. / Short to medium-term streamflow forecasts at different locations in a watershed are generally beneficial to allow an early response to hydrological events such as floods, and more efficient operation of hydraulic structures such as dams. Currently, an increasingly recognition has been given to the including of uncertainties in the generation of hydrological forecasts, what is usually made producting the so called Ensemble Forecast. In this kind of forecast inferences about possible future scenarios are made by considering, for example, multiple possible trajectories of the atmospheric states, which when applied to a hydrological model results in streamflow trajectories distributions. Several recent applications suggested the possibility of better decisions making based on this uncertainties knowledge. In Brazil, a predominant use of hydrological forecasts is for hydropower reservoirs operation, which are the largest source of energy for the country. Future inflows estimates in these cases are used either for normal operation of the national system, done centrally, as for local operation of the dams in cases of floods, where it is necessary to ensure the dam safety and the mitigation of impacts downstream and/or upstream. However, the currently technique used to generate the operational forecasts is not based on ensembles, and the Brazilian local research on the potential benefits of these forms of forecasts production can be classified as incipient. Thus, the aim of this Thesis was to investigate benefits in terms of quality and persistence of using short to medium-term ensemble inflow forecast for reservoirs located on large Brazilian river basins. To fulfill these objectives streamflow forecast tests have been proposed for three Brazilian river basins: Alto San Francisco, Doce, and Tocantins. The hydrological model MGB-IPH was applied to perform retroactive forecasts (hindcastings) within a period of tests forced by rainfall data from three different ensemble weather forecasting systems (ECMWFpf, GEFs, and CPTEC-pf) and a deterministic prediction reference (ECMWF-fc), all available in the TIGGE archive. In general, the ensemble predictions, especially from ECMWF-pf and GEFs models, were superior in quality and persistence in comparison to the deterministic reference. And the use of the Super ensemble composed by the combination of the three ensemble models was shown to be among the results, and also a robust strategy. For a flood protection strategy, the analyzes indicate benefits in the consideration of the upper bounds of the ensembles, and for a reservoir operation strategy that vision could be more focused on average flow rates, which may contain some verified bias. The comparison between the basins results showed that one can not transport results and considerations from one location to another, despite being in the same climate region. Regarding uncertainties, it was noted that hydrological modeling amplifies the uncertainty in the forecasts, in some extent due to the large basin evolution of state variables. Anyway, it is believed that more investments in ensemble forecasting techniques and its applications shown to be a good way to make better use of forecasts.
10

Previsão de cheias por conjunto em curto a médio prazo: bacia do Taquari-Antas/RS

Siqueira, Vinícius Alencar January 2015 (has links)
A previsão hidrológica possibilita a identificação antecipada de eventos de cheia potencialmente causadores de inundação, o que é de grande importância para a atuação de entidades como a Defesa Civil. Quando se deseja estender a antecedência no tempo em relação a estes eventos, principalmente nos casos onde a bacia de interesse é relativamente rápida, torna-se necessária a incorporação de previsões quantitativas de precipitação (QPF) na modelagem hidrológica, as quais podem ser obtidas a partir de modelos numéricos de previsão do tempo. Entretanto, a falta de acurácia atribuída a estas previsões de chuva, dadas de forma determinística, vem promovendo sua substituição por sistemas de previsão meteorológica por conjunto (EPS - Ensemble Prediction Systems), cuja finalidade é a geração de possíveis estados futuros da atmosfera para considerar as incertezas associadas ao seu estado inicial e às deficiências na representação física dos modelos de previsão do tempo. Neste contexto, o presente estudo teve por objetivo avaliar uma metodologia de previsão de cheias por conjunto na bacia do Taquari-Antas/RS até a cidade de Encantado (19.000 km²), localizada na região Sul do Brasil. Para tanto, foi utilizado o modelo hidrológico MGB-IPH acoplado a diferentes sistemas de previsão, sendo eles: (i) EPS Regional ETA, de curto prazo (até 72 horas) com 5 membros de diferentes parametrizações; (ii) EPS Global ECMWF de médio prazo (até 10 dias) com 50 membros de condições iniciais perturbadas, incluindo perturbação estocástica nos parâmetros de ajuste do modelo e; (iii) Previsão Determinística do Modelo Regional ETA (até 7 dias). A avaliação das previsões consistiu em dois hindcastings distintos, envolvendo uma análise visual de eventos singulares ocorridos em 06/06/2014 e 21/07/2011 além de uma análise estatística no período de Mar/2014 - Nov/2014. Durante a análise visual foi possível identificar, a partir de antecedências de 5 a 6 dias, uma persistência na previsão dada pelo crescente número de membros do conjunto de médio prazo (ECMWF) com superação dos limiares de referência, na medida em que se aproximavam os eventos de cheia. Apesar da grande incerteza na magnitude das previsões hidrológicas para o conjunto de curto prazo, a vazão máxima foi relativamente bem prevista por pelo menos 1 membro em quase todas as antecedências, enquanto que a previsão do timing dos eventos foi considerada de boa confiabilidade. Durante a avaliação estatística foi possível notar uma falta de espalhamento nos conjuntos, com tendência de subestimativa de acordo com o aumento da antecedência. Em uma comparação com previsões determinísticas, as previsões por conjunto demonstraram maior acurácia principalmente até 72 horas de antecedência, com destaque para a maior probabilidade de detecção dos limiares de referência e manutenção de falso alarme a níveis reduzidos. Além disso, verificou-se também que a agregação de previsões efetuadas em tempo anterior naquelas atuais acarreta em ligeira ampliação do espalhamento do conjunto e maiores probabilidades de detecção dos limiares de alerta para os membros mais elevados, apesar da redução no desempenho em termos de acurácia e viés. De forma geral, as previsões por conjunto apresentam potencial para servir como uma informação complementar em sistemas de alerta contra cheias, possibilitando uma melhor preparação dos agentes envolvidos durante a ocorrência destes eventos. / Hydrological forecasting plays an important role for issuing flood warnings, allowing for anticipation and better preparation of authorities at the occurrence of such events. In order to extend lead time in a flood forecast, especially when the catchment response time is relatively fast, it may be useful to couple a hydrological model to quantitative precipitation forecasts (QPF), usually obtained directly from numerical weather prediction (NWP). However, deterministic (i.e. single) QPF are usually referred to many errors and lack of accuracy, mainly caused by uncertainties on initial state of the atmosphere and on physical representation of weather forecasting models. To address these shortcomings, it becomes necessary to take into account the uncertainties associated to rain forecasts, which can be represented by Ensemble Prediction Systems (EPS). The purpose of such systems is to provide different trajectories of the atmosphere by perturbations on its initial condition and on parameterization schemes of the models, generating an ensemble of forecasts that can be used as input to hydrological modelling (HEPS). In this context, the present study aimed to assess a methodology of ensemble flood forecasting on Taquari-Antas basin up to the city of Encantado/RS (19.000 km²), located in southern Brazil. Therefore, the hydrological model MGB-IPH was coupled to different forecasting systems: (i) Short Range EPS ETA (up to 72 hours), a regional model with 5 members of different parameterization schemes; (ii) Medium Range EPS ECMWF (up to 10 days), a global model with 50 members of perturbed initial conditions and stochastic perturbation in the model parameters; (iii) Deterministic ETA Model (up to 7 days). The forecasts were evaluated by two different hindcastings, which includes a visual assessment of singular events occurred on 2011 and 2014 and a statistical analysis for the period between Mar/2014 and Nov/2014. It was possible to identify a forecast persistence on medium-range for the selected events, by the increasing number of members exceeding the reference thresholds from lead times up to 5 - 6 days. On the short range, although large uncertainties in the magnitude of hydrological forecasts were found, the peak discharge was well forecasted - at least for a single member - in nearly all lead times, whereas the prediction of the peak timing was considered reliable. Regarding to statistical evaluation, an inadequate spread in the ensemble was observed from short- to medium-range, with a tendency of underestimation for longer lead times. In a comparison with deterministic forecasts, the ensemble forecasts showed higher accuracy especially up to 72 hours in advance, including highlights on greater probability of detection (POD) above the reference thresholds even with low false alarm rates. It also was found that the a combination of previous forecasts on the recent ones leads to a slight increase of ensemble spread and POD for higher members, despite the performance reduction in terms of accuracy and bias. In summary, the hydrological ensemble forecasts demonstrated a good potential to serve as an additional information within a Flood Alert System.

Page generated in 0.1133 seconds