• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • Tagged with
  • 18
  • 18
  • 15
  • 15
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização da operação de um reservatório para controle de cheias com base na previsão de vazão

Bravo, Juan Martín January 2006 (has links)
No presente trabalho foram avaliados os benefícios da previsão de vazão afluente de curto e longo prazo, na operação de um reservatório com dois usos conflitantes: geração de energia e controle de cheias. A simulação da operação do reservatório foi realizada com base em dois tipos de modelos para avaliar os benefícios da previsão. Um modelo de operação sem previsão e outro com previsão de vazão afluente, este último desenvolvido no presente trabalho. Regras de operação simples, na forma de curvas-guia lineares, foram utilizadas nos casos de operação com e sem previsão de vazões afluentes. As curvas-guia foram otimizadas através de uma técnica de parametrização, simulação e otimização utilizando um algoritmo evolutivo semelhante a um algoritmo genético. Como base para as análises foram utilizados dados relativos ao reservatório de Três Marias, no Rio São Francisco, principalmente pela disponibilidade de previsões reais de vazão de curto prazo a partir de um trabalho prévio. Essas previsões reais de vazão foram calculadas através de um modelo hidrológico distribuído que utiliza como dados de entrada, previsões de chuva do modelo atmosférico regional ETA. Para avaliar o potencial benefício das previsões de vazão na operação do reservatório, foram realizados testes considerando às vazões afluentes observadas como “previsões perfeitas de vazão”. Os resultados com previsões perfeitas de vazão mostram que pode haver um benefício relativo (incremento na geração de energia) de aproximadamente 8% (cerca de 4,77 milhões de dólares anuais), se forem utilizadas previsões de vazão de longo prazo com dois meses de antecedência, e se a operação for planejada com essa mesma antecedência. A operação baseada em previsões de prazos ou horizontes mais curtos apresenta benefícios inferiores, mas ainda assim significativos. Por exemplo, a previsão perfeita com freqüência semanal e horizonte de 12 dias pode trazer um benefício de aproximadamente 4,45% (cerca de 2,75 milhões de dólares anuais). Esses benefícios foram obtidos com o mesmo desempenho no controle de cheias. Posteriormente, foram realizados testes utilizando as previsões reais de vazão. Os benefícios obtidos com as previsões reais de curto prazo são inferiores aos benefícios obtidos com as previsões perfeitas de curto prazo, como era esperado. Entretanto, com as previsões reais de vazão, foram obtidos benefícios superiores a 50% dos que seriam esperados com a previsão perfeita (vazões observadas). Os resultados obtidos são promissores e mostram que há vantagens evidentes na utilização de previsões de chuva para se obter previsões de vazão na operação de reservatórios com usos múltiplos, quando também é associada à otimização sistêmica de um aproveitamento hidrelétrico.
2

Otimização da operação de um reservatório para controle de cheias com base na previsão de vazão

Bravo, Juan Martín January 2006 (has links)
No presente trabalho foram avaliados os benefícios da previsão de vazão afluente de curto e longo prazo, na operação de um reservatório com dois usos conflitantes: geração de energia e controle de cheias. A simulação da operação do reservatório foi realizada com base em dois tipos de modelos para avaliar os benefícios da previsão. Um modelo de operação sem previsão e outro com previsão de vazão afluente, este último desenvolvido no presente trabalho. Regras de operação simples, na forma de curvas-guia lineares, foram utilizadas nos casos de operação com e sem previsão de vazões afluentes. As curvas-guia foram otimizadas através de uma técnica de parametrização, simulação e otimização utilizando um algoritmo evolutivo semelhante a um algoritmo genético. Como base para as análises foram utilizados dados relativos ao reservatório de Três Marias, no Rio São Francisco, principalmente pela disponibilidade de previsões reais de vazão de curto prazo a partir de um trabalho prévio. Essas previsões reais de vazão foram calculadas através de um modelo hidrológico distribuído que utiliza como dados de entrada, previsões de chuva do modelo atmosférico regional ETA. Para avaliar o potencial benefício das previsões de vazão na operação do reservatório, foram realizados testes considerando às vazões afluentes observadas como “previsões perfeitas de vazão”. Os resultados com previsões perfeitas de vazão mostram que pode haver um benefício relativo (incremento na geração de energia) de aproximadamente 8% (cerca de 4,77 milhões de dólares anuais), se forem utilizadas previsões de vazão de longo prazo com dois meses de antecedência, e se a operação for planejada com essa mesma antecedência. A operação baseada em previsões de prazos ou horizontes mais curtos apresenta benefícios inferiores, mas ainda assim significativos. Por exemplo, a previsão perfeita com freqüência semanal e horizonte de 12 dias pode trazer um benefício de aproximadamente 4,45% (cerca de 2,75 milhões de dólares anuais). Esses benefícios foram obtidos com o mesmo desempenho no controle de cheias. Posteriormente, foram realizados testes utilizando as previsões reais de vazão. Os benefícios obtidos com as previsões reais de curto prazo são inferiores aos benefícios obtidos com as previsões perfeitas de curto prazo, como era esperado. Entretanto, com as previsões reais de vazão, foram obtidos benefícios superiores a 50% dos que seriam esperados com a previsão perfeita (vazões observadas). Os resultados obtidos são promissores e mostram que há vantagens evidentes na utilização de previsões de chuva para se obter previsões de vazão na operação de reservatórios com usos múltiplos, quando também é associada à otimização sistêmica de um aproveitamento hidrelétrico.
3

Otimização da operação de um reservatório para controle de cheias com base na previsão de vazão

Bravo, Juan Martín January 2006 (has links)
No presente trabalho foram avaliados os benefícios da previsão de vazão afluente de curto e longo prazo, na operação de um reservatório com dois usos conflitantes: geração de energia e controle de cheias. A simulação da operação do reservatório foi realizada com base em dois tipos de modelos para avaliar os benefícios da previsão. Um modelo de operação sem previsão e outro com previsão de vazão afluente, este último desenvolvido no presente trabalho. Regras de operação simples, na forma de curvas-guia lineares, foram utilizadas nos casos de operação com e sem previsão de vazões afluentes. As curvas-guia foram otimizadas através de uma técnica de parametrização, simulação e otimização utilizando um algoritmo evolutivo semelhante a um algoritmo genético. Como base para as análises foram utilizados dados relativos ao reservatório de Três Marias, no Rio São Francisco, principalmente pela disponibilidade de previsões reais de vazão de curto prazo a partir de um trabalho prévio. Essas previsões reais de vazão foram calculadas através de um modelo hidrológico distribuído que utiliza como dados de entrada, previsões de chuva do modelo atmosférico regional ETA. Para avaliar o potencial benefício das previsões de vazão na operação do reservatório, foram realizados testes considerando às vazões afluentes observadas como “previsões perfeitas de vazão”. Os resultados com previsões perfeitas de vazão mostram que pode haver um benefício relativo (incremento na geração de energia) de aproximadamente 8% (cerca de 4,77 milhões de dólares anuais), se forem utilizadas previsões de vazão de longo prazo com dois meses de antecedência, e se a operação for planejada com essa mesma antecedência. A operação baseada em previsões de prazos ou horizontes mais curtos apresenta benefícios inferiores, mas ainda assim significativos. Por exemplo, a previsão perfeita com freqüência semanal e horizonte de 12 dias pode trazer um benefício de aproximadamente 4,45% (cerca de 2,75 milhões de dólares anuais). Esses benefícios foram obtidos com o mesmo desempenho no controle de cheias. Posteriormente, foram realizados testes utilizando as previsões reais de vazão. Os benefícios obtidos com as previsões reais de curto prazo são inferiores aos benefícios obtidos com as previsões perfeitas de curto prazo, como era esperado. Entretanto, com as previsões reais de vazão, foram obtidos benefícios superiores a 50% dos que seriam esperados com a previsão perfeita (vazões observadas). Os resultados obtidos são promissores e mostram que há vantagens evidentes na utilização de previsões de chuva para se obter previsões de vazão na operação de reservatórios com usos múltiplos, quando também é associada à otimização sistêmica de um aproveitamento hidrelétrico.
4

Previsão por conjunto de vazões afluentes a reservatórios em grandes bacias hidrográficas brasileiras

Fan, Fernando Mainardi January 2015 (has links)
A previsão com antecedência de curto e médio prazo da vazão em diferentes locais de bacias hidrográficas geralmente é benéfica ao permitir uma resposta antecipada a eventos hidrológicos como cheias, e a operação mais eficiente de obras hidráulicas como barragens. Atualmente, cada vez mais se tem reconhecida a importância da inclusão das incertezas na geração de previsões hidrológicas, feita através de previsões por conjunto (ou ensemble). Neste tipo de previsão são feitas inferências sobre cenários possíveis futuros através da consideração de, por exemplo, múltiplas trajetórias possíveis dos estados da atmosfera, que ao serem aplicadas em um modelo hidrológico resultam em distribuições de trajetórias de vazões. Várias aplicações recentes tem sugerido a possibilidade da tomada de melhores decisões para o futuro quando fundamentadas neste conhecimento das incertezas. No Brasil, um uso predominante de previsões hidrológicas é na operação de reservatórios de usinas hidroelétricas, que constituem a maior fonte de energia do País. As previsões nestes casos são utilizadas tanto para a operação normal do sistema nacional, feita de forma centralizada, como para a operação local das usinas em casos de cheia, onde é necessário velar pela segurança da barragem e pela atenuação de impactos a jusante e/ou a montante dos barramentos. Contudo, a forma como as previsões de vazão são geradas e usadas no cenário nacional não são baseadas em técnicas de previsão por conjunto, onde a própria pesquisa local sobre os potenciais benefícios destas formas de geração de previsões pode ser classificada como incipiente. Assim, o objetivo principal deste estudo é investigar benefícios em termos de qualidade e persistência do uso de previsões de afluência por conjunto para reservatórios em grandes bacias hidrográficas brasileiras em curto e médio prazo. Para cumprir com estes objetivos foram propostos ensaios de previsão de vazão por conjunto para três bacias hidrográficas brasileiras: Alto São Francisco, Doce, e Tocantins. O modelo hidrológico MGBIPH foi aplicado para a execução de previsões retroativas (hindcastings) alimentado por dados de chuva provindos de três diferentes sistemas de previsão meteorológica por conjunto (ECMWF-pf, GEFS, e CPTEC-pf) e mais uma previsão determinística de referência (ECMWF-fc), todos disponíveis na base de dados denominada TIGGE. De uma forma geral, as previsões por conjunto, principalmente dos modelos ECMWF-pf e GEFS, se mostraram superiores em termos de qualidade e persistência na comparação com a previsão determinística. E o uso do Super Ensemble, formado pela combinação dos três modelos mostrou-se uma alternativa entre as melhores testadas, principalmente por ser também uma estratégia robusta. Para uma estratégia de defesa contra cheias, as análises indicam benefícios para a consideração dos membros superiores dos conjuntos, e já para uma estratégia de operação de reservatórios essa visão pode ser mais focada em vazões médias, as quais podem conter algum viés. Já a comparação entre as bacias mostrou que resultados não podem ser transportados de um local para outro, apesar de estarem no mesmo clima. Em relação às incertezas, notou-se que a modelagem hidrológica amplifica as incertezas na previsão na medida em que os estados do modelo da grande bacia evoluem. De qualquer forma, acreditase que os resultados mostram que mais investimentos em técnicas de previsão por conjunto e suas aplicações são um caminho a ser seguido para ampliar os benefícios do uso de previsões hidrológicas. / Short to medium-term streamflow forecasts at different locations in a watershed are generally beneficial to allow an early response to hydrological events such as floods, and more efficient operation of hydraulic structures such as dams. Currently, an increasingly recognition has been given to the including of uncertainties in the generation of hydrological forecasts, what is usually made producting the so called Ensemble Forecast. In this kind of forecast inferences about possible future scenarios are made by considering, for example, multiple possible trajectories of the atmospheric states, which when applied to a hydrological model results in streamflow trajectories distributions. Several recent applications suggested the possibility of better decisions making based on this uncertainties knowledge. In Brazil, a predominant use of hydrological forecasts is for hydropower reservoirs operation, which are the largest source of energy for the country. Future inflows estimates in these cases are used either for normal operation of the national system, done centrally, as for local operation of the dams in cases of floods, where it is necessary to ensure the dam safety and the mitigation of impacts downstream and/or upstream. However, the currently technique used to generate the operational forecasts is not based on ensembles, and the Brazilian local research on the potential benefits of these forms of forecasts production can be classified as incipient. Thus, the aim of this Thesis was to investigate benefits in terms of quality and persistence of using short to medium-term ensemble inflow forecast for reservoirs located on large Brazilian river basins. To fulfill these objectives streamflow forecast tests have been proposed for three Brazilian river basins: Alto San Francisco, Doce, and Tocantins. The hydrological model MGB-IPH was applied to perform retroactive forecasts (hindcastings) within a period of tests forced by rainfall data from three different ensemble weather forecasting systems (ECMWFpf, GEFs, and CPTEC-pf) and a deterministic prediction reference (ECMWF-fc), all available in the TIGGE archive. In general, the ensemble predictions, especially from ECMWF-pf and GEFs models, were superior in quality and persistence in comparison to the deterministic reference. And the use of the Super ensemble composed by the combination of the three ensemble models was shown to be among the results, and also a robust strategy. For a flood protection strategy, the analyzes indicate benefits in the consideration of the upper bounds of the ensembles, and for a reservoir operation strategy that vision could be more focused on average flow rates, which may contain some verified bias. The comparison between the basins results showed that one can not transport results and considerations from one location to another, despite being in the same climate region. Regarding uncertainties, it was noted that hydrological modeling amplifies the uncertainty in the forecasts, in some extent due to the large basin evolution of state variables. Anyway, it is believed that more investments in ensemble forecasting techniques and its applications shown to be a good way to make better use of forecasts.
5

Previsão por conjunto de vazões afluentes a reservatórios em grandes bacias hidrográficas brasileiras

Fan, Fernando Mainardi January 2015 (has links)
A previsão com antecedência de curto e médio prazo da vazão em diferentes locais de bacias hidrográficas geralmente é benéfica ao permitir uma resposta antecipada a eventos hidrológicos como cheias, e a operação mais eficiente de obras hidráulicas como barragens. Atualmente, cada vez mais se tem reconhecida a importância da inclusão das incertezas na geração de previsões hidrológicas, feita através de previsões por conjunto (ou ensemble). Neste tipo de previsão são feitas inferências sobre cenários possíveis futuros através da consideração de, por exemplo, múltiplas trajetórias possíveis dos estados da atmosfera, que ao serem aplicadas em um modelo hidrológico resultam em distribuições de trajetórias de vazões. Várias aplicações recentes tem sugerido a possibilidade da tomada de melhores decisões para o futuro quando fundamentadas neste conhecimento das incertezas. No Brasil, um uso predominante de previsões hidrológicas é na operação de reservatórios de usinas hidroelétricas, que constituem a maior fonte de energia do País. As previsões nestes casos são utilizadas tanto para a operação normal do sistema nacional, feita de forma centralizada, como para a operação local das usinas em casos de cheia, onde é necessário velar pela segurança da barragem e pela atenuação de impactos a jusante e/ou a montante dos barramentos. Contudo, a forma como as previsões de vazão são geradas e usadas no cenário nacional não são baseadas em técnicas de previsão por conjunto, onde a própria pesquisa local sobre os potenciais benefícios destas formas de geração de previsões pode ser classificada como incipiente. Assim, o objetivo principal deste estudo é investigar benefícios em termos de qualidade e persistência do uso de previsões de afluência por conjunto para reservatórios em grandes bacias hidrográficas brasileiras em curto e médio prazo. Para cumprir com estes objetivos foram propostos ensaios de previsão de vazão por conjunto para três bacias hidrográficas brasileiras: Alto São Francisco, Doce, e Tocantins. O modelo hidrológico MGBIPH foi aplicado para a execução de previsões retroativas (hindcastings) alimentado por dados de chuva provindos de três diferentes sistemas de previsão meteorológica por conjunto (ECMWF-pf, GEFS, e CPTEC-pf) e mais uma previsão determinística de referência (ECMWF-fc), todos disponíveis na base de dados denominada TIGGE. De uma forma geral, as previsões por conjunto, principalmente dos modelos ECMWF-pf e GEFS, se mostraram superiores em termos de qualidade e persistência na comparação com a previsão determinística. E o uso do Super Ensemble, formado pela combinação dos três modelos mostrou-se uma alternativa entre as melhores testadas, principalmente por ser também uma estratégia robusta. Para uma estratégia de defesa contra cheias, as análises indicam benefícios para a consideração dos membros superiores dos conjuntos, e já para uma estratégia de operação de reservatórios essa visão pode ser mais focada em vazões médias, as quais podem conter algum viés. Já a comparação entre as bacias mostrou que resultados não podem ser transportados de um local para outro, apesar de estarem no mesmo clima. Em relação às incertezas, notou-se que a modelagem hidrológica amplifica as incertezas na previsão na medida em que os estados do modelo da grande bacia evoluem. De qualquer forma, acreditase que os resultados mostram que mais investimentos em técnicas de previsão por conjunto e suas aplicações são um caminho a ser seguido para ampliar os benefícios do uso de previsões hidrológicas. / Short to medium-term streamflow forecasts at different locations in a watershed are generally beneficial to allow an early response to hydrological events such as floods, and more efficient operation of hydraulic structures such as dams. Currently, an increasingly recognition has been given to the including of uncertainties in the generation of hydrological forecasts, what is usually made producting the so called Ensemble Forecast. In this kind of forecast inferences about possible future scenarios are made by considering, for example, multiple possible trajectories of the atmospheric states, which when applied to a hydrological model results in streamflow trajectories distributions. Several recent applications suggested the possibility of better decisions making based on this uncertainties knowledge. In Brazil, a predominant use of hydrological forecasts is for hydropower reservoirs operation, which are the largest source of energy for the country. Future inflows estimates in these cases are used either for normal operation of the national system, done centrally, as for local operation of the dams in cases of floods, where it is necessary to ensure the dam safety and the mitigation of impacts downstream and/or upstream. However, the currently technique used to generate the operational forecasts is not based on ensembles, and the Brazilian local research on the potential benefits of these forms of forecasts production can be classified as incipient. Thus, the aim of this Thesis was to investigate benefits in terms of quality and persistence of using short to medium-term ensemble inflow forecast for reservoirs located on large Brazilian river basins. To fulfill these objectives streamflow forecast tests have been proposed for three Brazilian river basins: Alto San Francisco, Doce, and Tocantins. The hydrological model MGB-IPH was applied to perform retroactive forecasts (hindcastings) within a period of tests forced by rainfall data from three different ensemble weather forecasting systems (ECMWFpf, GEFs, and CPTEC-pf) and a deterministic prediction reference (ECMWF-fc), all available in the TIGGE archive. In general, the ensemble predictions, especially from ECMWF-pf and GEFs models, were superior in quality and persistence in comparison to the deterministic reference. And the use of the Super ensemble composed by the combination of the three ensemble models was shown to be among the results, and also a robust strategy. For a flood protection strategy, the analyzes indicate benefits in the consideration of the upper bounds of the ensembles, and for a reservoir operation strategy that vision could be more focused on average flow rates, which may contain some verified bias. The comparison between the basins results showed that one can not transport results and considerations from one location to another, despite being in the same climate region. Regarding uncertainties, it was noted that hydrological modeling amplifies the uncertainty in the forecasts, in some extent due to the large basin evolution of state variables. Anyway, it is believed that more investments in ensemble forecasting techniques and its applications shown to be a good way to make better use of forecasts.
6

Previsão por conjunto de vazões afluentes a reservatórios em grandes bacias hidrográficas brasileiras

Fan, Fernando Mainardi January 2015 (has links)
A previsão com antecedência de curto e médio prazo da vazão em diferentes locais de bacias hidrográficas geralmente é benéfica ao permitir uma resposta antecipada a eventos hidrológicos como cheias, e a operação mais eficiente de obras hidráulicas como barragens. Atualmente, cada vez mais se tem reconhecida a importância da inclusão das incertezas na geração de previsões hidrológicas, feita através de previsões por conjunto (ou ensemble). Neste tipo de previsão são feitas inferências sobre cenários possíveis futuros através da consideração de, por exemplo, múltiplas trajetórias possíveis dos estados da atmosfera, que ao serem aplicadas em um modelo hidrológico resultam em distribuições de trajetórias de vazões. Várias aplicações recentes tem sugerido a possibilidade da tomada de melhores decisões para o futuro quando fundamentadas neste conhecimento das incertezas. No Brasil, um uso predominante de previsões hidrológicas é na operação de reservatórios de usinas hidroelétricas, que constituem a maior fonte de energia do País. As previsões nestes casos são utilizadas tanto para a operação normal do sistema nacional, feita de forma centralizada, como para a operação local das usinas em casos de cheia, onde é necessário velar pela segurança da barragem e pela atenuação de impactos a jusante e/ou a montante dos barramentos. Contudo, a forma como as previsões de vazão são geradas e usadas no cenário nacional não são baseadas em técnicas de previsão por conjunto, onde a própria pesquisa local sobre os potenciais benefícios destas formas de geração de previsões pode ser classificada como incipiente. Assim, o objetivo principal deste estudo é investigar benefícios em termos de qualidade e persistência do uso de previsões de afluência por conjunto para reservatórios em grandes bacias hidrográficas brasileiras em curto e médio prazo. Para cumprir com estes objetivos foram propostos ensaios de previsão de vazão por conjunto para três bacias hidrográficas brasileiras: Alto São Francisco, Doce, e Tocantins. O modelo hidrológico MGBIPH foi aplicado para a execução de previsões retroativas (hindcastings) alimentado por dados de chuva provindos de três diferentes sistemas de previsão meteorológica por conjunto (ECMWF-pf, GEFS, e CPTEC-pf) e mais uma previsão determinística de referência (ECMWF-fc), todos disponíveis na base de dados denominada TIGGE. De uma forma geral, as previsões por conjunto, principalmente dos modelos ECMWF-pf e GEFS, se mostraram superiores em termos de qualidade e persistência na comparação com a previsão determinística. E o uso do Super Ensemble, formado pela combinação dos três modelos mostrou-se uma alternativa entre as melhores testadas, principalmente por ser também uma estratégia robusta. Para uma estratégia de defesa contra cheias, as análises indicam benefícios para a consideração dos membros superiores dos conjuntos, e já para uma estratégia de operação de reservatórios essa visão pode ser mais focada em vazões médias, as quais podem conter algum viés. Já a comparação entre as bacias mostrou que resultados não podem ser transportados de um local para outro, apesar de estarem no mesmo clima. Em relação às incertezas, notou-se que a modelagem hidrológica amplifica as incertezas na previsão na medida em que os estados do modelo da grande bacia evoluem. De qualquer forma, acreditase que os resultados mostram que mais investimentos em técnicas de previsão por conjunto e suas aplicações são um caminho a ser seguido para ampliar os benefícios do uso de previsões hidrológicas. / Short to medium-term streamflow forecasts at different locations in a watershed are generally beneficial to allow an early response to hydrological events such as floods, and more efficient operation of hydraulic structures such as dams. Currently, an increasingly recognition has been given to the including of uncertainties in the generation of hydrological forecasts, what is usually made producting the so called Ensemble Forecast. In this kind of forecast inferences about possible future scenarios are made by considering, for example, multiple possible trajectories of the atmospheric states, which when applied to a hydrological model results in streamflow trajectories distributions. Several recent applications suggested the possibility of better decisions making based on this uncertainties knowledge. In Brazil, a predominant use of hydrological forecasts is for hydropower reservoirs operation, which are the largest source of energy for the country. Future inflows estimates in these cases are used either for normal operation of the national system, done centrally, as for local operation of the dams in cases of floods, where it is necessary to ensure the dam safety and the mitigation of impacts downstream and/or upstream. However, the currently technique used to generate the operational forecasts is not based on ensembles, and the Brazilian local research on the potential benefits of these forms of forecasts production can be classified as incipient. Thus, the aim of this Thesis was to investigate benefits in terms of quality and persistence of using short to medium-term ensemble inflow forecast for reservoirs located on large Brazilian river basins. To fulfill these objectives streamflow forecast tests have been proposed for three Brazilian river basins: Alto San Francisco, Doce, and Tocantins. The hydrological model MGB-IPH was applied to perform retroactive forecasts (hindcastings) within a period of tests forced by rainfall data from three different ensemble weather forecasting systems (ECMWFpf, GEFs, and CPTEC-pf) and a deterministic prediction reference (ECMWF-fc), all available in the TIGGE archive. In general, the ensemble predictions, especially from ECMWF-pf and GEFs models, were superior in quality and persistence in comparison to the deterministic reference. And the use of the Super ensemble composed by the combination of the three ensemble models was shown to be among the results, and also a robust strategy. For a flood protection strategy, the analyzes indicate benefits in the consideration of the upper bounds of the ensembles, and for a reservoir operation strategy that vision could be more focused on average flow rates, which may contain some verified bias. The comparison between the basins results showed that one can not transport results and considerations from one location to another, despite being in the same climate region. Regarding uncertainties, it was noted that hydrological modeling amplifies the uncertainty in the forecasts, in some extent due to the large basin evolution of state variables. Anyway, it is believed that more investments in ensemble forecasting techniques and its applications shown to be a good way to make better use of forecasts.
7

Previsão de cheias por conjunto em curto prazo

Meller, Adalberto January 2012 (has links)
A previsão e emissão de alertas antecipados constituem um dos principais elementos na prevenção dos impactos ocasionados por eventos de cheias. Uma das formas utilizadas para se obter uma ampliação do horizonte de previsão é através do uso da modelagem chuva-vazão associada à previsão de precipitação, tipicamente derivada de modelos meteorológicos. A precipitação, no entanto, é uma das variáveis que impõe maior dificuldade na previsão meteorológica, sendo considerada uma das principais fontes de incerteza nos resultados da previsão de cheias. A previsão por conjunto é uma técnica originalmente desenvolvida nas ciências atmosféricas e procura explorar as incertezas associadas às condições iniciais e/ou deficiências na estrutura dos modelos meteorológicos com intuito de melhorar sua previsibilidade. A partir de diferentes modelos meteorológicos ou de diferentes condições iniciais de um único modelo, são gerados um conjunto de previsões que representam possíveis trajetórias dos processos atmosféricos ao longo do horizonte de previsão. Pesquisas recentes, principalmente na Europa e Estados Unidos, têm mostrado resultados promissores do acoplamento de previsões meteorológicas por conjunto à modelos hidrológicos para realizar previsões de cheia. Essa pesquisa trata da avaliação do benefício da previsão de cheias por conjunto em curto prazo, em uma bacia de médio porte, utilizando dados e de ferramentas para previsão de vazões disponíveis em modo operacional no Brasil. Como estudo de caso foi utilizada a bacia do Rio Paraopeba (12.150km²), de clima tipicamente tropical, localizada na região sudeste do Brasil. A metodologia proposta para geração das previsões hidrológicas utilizou o modelo hidrológico MGB-IPH alimentado por um conjunto previsões de precipitação de diferentes modelos, com diferentes condições iniciais e parametrizações, dando origem a distintos cenários de previsão de vazões. Como parâmetro de referência na avaliação do desempenho das previsões por conjunto foi utilizada uma previsão hidrológica determinística única, baseada em uma previsão de precipitação obtida da combinação ótima de saídas de diversos modelos meteorológicos. As previsões foram realizadas retrospectivamente no período entre ago/2008 e mai/2011, sendo analisadas durante o período chuvoso dos anos hidrológicos (out-abr). Os resultados das previsões de cheia por conjunto foram avaliados através de uma representação determinística, considerando a média dos membros do conjunto, assim como através de uma representação probabilística, considerando todos os membros, através de medidas de desempenho específicas para esse fim. Na avaliação determinística, a média do conjunto hidrológico apresentou resultados similares aos obtido com a previsão determinística de referência, embora tenha apresentado benefício significativo em relação à maior parte dos membros do conjunto. A avaliação das previsões de cheia por conjunto, por sua vez, mostrou a existência de uma superestimativa e de um subespalhamento dos membros em relação às observações, sobretudo nos primeiros intervalos de tempo da previsão. Na comparação dos resultados das previsões de eventos do tipo dicótomos, que consideram a superação ou não de vazões limites de alerta, o 9º decil das previsões por conjunto mostrou superioridade em relação à previsão determinística de referência e mesmo a média do conjunto, sendo possível obter, na maior parte dos casos analisados, um aumento significativo na proporção de eventos corretamente previstos mantendo as taxas de alarmes falsos em níveis reduzidos. Esse benefício foi, de modo geral, maior para maiores antecedências e vazões limites, situações mais importantes num contexto de prevenção de cheias. Os resultados mostraram ainda que, em média, uma diminuição do número de membros do conjunto diminui seu desempenho nas previsões. / The forecasting and issuing of early warnings represent a key element to prevent the impacts of flood events. An alternative to extend forecasting horizon is the use of rainfall-runoff modeling coupled with precipitation forecasts derived from numerical weather prediction (NWP) models. However, NWP models have difficulty to accurately predict precipitation due to the extremely sensitivity of the initial conditions. Therefore, this variable represents one of the major sources of uncertainties in flood forecasting. A probabilistic or ensemble forecasting approach was originally developed in the atmospheric sciences and then applied to other research areas. This procedure explores the uncertainties related to initial conditions and deficiencies in the structure of NWP models intending to improve its predictability. Using different NWP models or different initial conditions of a single model, an ensemble forecast showing possible trajectories of atmospheric processes over the forecast horizon are produced. Recent studies developed in Europe and the United States have shown promising results in flood forecasting using hydrological models fed by NWP ensemble outputs. The present research assess the performance of short term ensemble flood forecasting in a medium size tropical basin, based on data and streamflow forecasting tools available in operational mode in Brazil. The Paraopeba River basin (12,150 km²), located in the upper portion of the São Francisco River basin, in Southeastern Brazil, was selected as a case study. The proposed methodology used the MGB-IPH hydrological coupled to an ensemble of precipitation forecasts generated by several models with different initial conditions and parameterizations. The results are several scenarios of streamflow forecasts. A single deterministic streamflow forecast, based on a quantitative precipitation forecast derived from the optimal combination of several outputs of NWP models, was used as a reference to assess the performance of the streamflow ensemble forecasts. The streamflow forecasts were performed between aug/2008 and may/2011 and were analyzed during the rainy seasons (austral summer). The results from the ensemble flood forecasting were assessed by deterministic and probabilistic performance measures, with the ensemble mean being used by the former, and specific assessment measure by the later. Based on the deterministic assessment, the ensemble mean showed similar results to those obtained by the deterministic reference forecast, although showing better performance over most of the ensemble members. Based on the probabilistic performance measures, however, results showed the existence of an ensemble overforecasting and underspread of the members in regard to observed values, especially during the first lead times. The results for predictions of dichotomous events, which mean exceeding or not flood warning thresholds, showed that the 9th decile of the ensemble over performed the deterministic forecast and even the ensemble mean. In most cases, it was observed an increase in the proportion of correctly forecasted events while keeping false alarm rates at low levels. This benefit was generally higher for higher flow thresholds and for longer lead times, which are the most important situations for flood mitigation. The results show, also, that, in average, a reduction in the number of ensemble members decreases the performance of ensemble flood forecasts.
8

Previsão de cheias por conjunto em curto prazo

Meller, Adalberto January 2012 (has links)
A previsão e emissão de alertas antecipados constituem um dos principais elementos na prevenção dos impactos ocasionados por eventos de cheias. Uma das formas utilizadas para se obter uma ampliação do horizonte de previsão é através do uso da modelagem chuva-vazão associada à previsão de precipitação, tipicamente derivada de modelos meteorológicos. A precipitação, no entanto, é uma das variáveis que impõe maior dificuldade na previsão meteorológica, sendo considerada uma das principais fontes de incerteza nos resultados da previsão de cheias. A previsão por conjunto é uma técnica originalmente desenvolvida nas ciências atmosféricas e procura explorar as incertezas associadas às condições iniciais e/ou deficiências na estrutura dos modelos meteorológicos com intuito de melhorar sua previsibilidade. A partir de diferentes modelos meteorológicos ou de diferentes condições iniciais de um único modelo, são gerados um conjunto de previsões que representam possíveis trajetórias dos processos atmosféricos ao longo do horizonte de previsão. Pesquisas recentes, principalmente na Europa e Estados Unidos, têm mostrado resultados promissores do acoplamento de previsões meteorológicas por conjunto à modelos hidrológicos para realizar previsões de cheia. Essa pesquisa trata da avaliação do benefício da previsão de cheias por conjunto em curto prazo, em uma bacia de médio porte, utilizando dados e de ferramentas para previsão de vazões disponíveis em modo operacional no Brasil. Como estudo de caso foi utilizada a bacia do Rio Paraopeba (12.150km²), de clima tipicamente tropical, localizada na região sudeste do Brasil. A metodologia proposta para geração das previsões hidrológicas utilizou o modelo hidrológico MGB-IPH alimentado por um conjunto previsões de precipitação de diferentes modelos, com diferentes condições iniciais e parametrizações, dando origem a distintos cenários de previsão de vazões. Como parâmetro de referência na avaliação do desempenho das previsões por conjunto foi utilizada uma previsão hidrológica determinística única, baseada em uma previsão de precipitação obtida da combinação ótima de saídas de diversos modelos meteorológicos. As previsões foram realizadas retrospectivamente no período entre ago/2008 e mai/2011, sendo analisadas durante o período chuvoso dos anos hidrológicos (out-abr). Os resultados das previsões de cheia por conjunto foram avaliados através de uma representação determinística, considerando a média dos membros do conjunto, assim como através de uma representação probabilística, considerando todos os membros, através de medidas de desempenho específicas para esse fim. Na avaliação determinística, a média do conjunto hidrológico apresentou resultados similares aos obtido com a previsão determinística de referência, embora tenha apresentado benefício significativo em relação à maior parte dos membros do conjunto. A avaliação das previsões de cheia por conjunto, por sua vez, mostrou a existência de uma superestimativa e de um subespalhamento dos membros em relação às observações, sobretudo nos primeiros intervalos de tempo da previsão. Na comparação dos resultados das previsões de eventos do tipo dicótomos, que consideram a superação ou não de vazões limites de alerta, o 9º decil das previsões por conjunto mostrou superioridade em relação à previsão determinística de referência e mesmo a média do conjunto, sendo possível obter, na maior parte dos casos analisados, um aumento significativo na proporção de eventos corretamente previstos mantendo as taxas de alarmes falsos em níveis reduzidos. Esse benefício foi, de modo geral, maior para maiores antecedências e vazões limites, situações mais importantes num contexto de prevenção de cheias. Os resultados mostraram ainda que, em média, uma diminuição do número de membros do conjunto diminui seu desempenho nas previsões. / The forecasting and issuing of early warnings represent a key element to prevent the impacts of flood events. An alternative to extend forecasting horizon is the use of rainfall-runoff modeling coupled with precipitation forecasts derived from numerical weather prediction (NWP) models. However, NWP models have difficulty to accurately predict precipitation due to the extremely sensitivity of the initial conditions. Therefore, this variable represents one of the major sources of uncertainties in flood forecasting. A probabilistic or ensemble forecasting approach was originally developed in the atmospheric sciences and then applied to other research areas. This procedure explores the uncertainties related to initial conditions and deficiencies in the structure of NWP models intending to improve its predictability. Using different NWP models or different initial conditions of a single model, an ensemble forecast showing possible trajectories of atmospheric processes over the forecast horizon are produced. Recent studies developed in Europe and the United States have shown promising results in flood forecasting using hydrological models fed by NWP ensemble outputs. The present research assess the performance of short term ensemble flood forecasting in a medium size tropical basin, based on data and streamflow forecasting tools available in operational mode in Brazil. The Paraopeba River basin (12,150 km²), located in the upper portion of the São Francisco River basin, in Southeastern Brazil, was selected as a case study. The proposed methodology used the MGB-IPH hydrological coupled to an ensemble of precipitation forecasts generated by several models with different initial conditions and parameterizations. The results are several scenarios of streamflow forecasts. A single deterministic streamflow forecast, based on a quantitative precipitation forecast derived from the optimal combination of several outputs of NWP models, was used as a reference to assess the performance of the streamflow ensemble forecasts. The streamflow forecasts were performed between aug/2008 and may/2011 and were analyzed during the rainy seasons (austral summer). The results from the ensemble flood forecasting were assessed by deterministic and probabilistic performance measures, with the ensemble mean being used by the former, and specific assessment measure by the later. Based on the deterministic assessment, the ensemble mean showed similar results to those obtained by the deterministic reference forecast, although showing better performance over most of the ensemble members. Based on the probabilistic performance measures, however, results showed the existence of an ensemble overforecasting and underspread of the members in regard to observed values, especially during the first lead times. The results for predictions of dichotomous events, which mean exceeding or not flood warning thresholds, showed that the 9th decile of the ensemble over performed the deterministic forecast and even the ensemble mean. In most cases, it was observed an increase in the proportion of correctly forecasted events while keeping false alarm rates at low levels. This benefit was generally higher for higher flow thresholds and for longer lead times, which are the most important situations for flood mitigation. The results show, also, that, in average, a reduction in the number of ensemble members decreases the performance of ensemble flood forecasts.
9

Previsão de cheias por conjunto em curto prazo

Meller, Adalberto January 2012 (has links)
A previsão e emissão de alertas antecipados constituem um dos principais elementos na prevenção dos impactos ocasionados por eventos de cheias. Uma das formas utilizadas para se obter uma ampliação do horizonte de previsão é através do uso da modelagem chuva-vazão associada à previsão de precipitação, tipicamente derivada de modelos meteorológicos. A precipitação, no entanto, é uma das variáveis que impõe maior dificuldade na previsão meteorológica, sendo considerada uma das principais fontes de incerteza nos resultados da previsão de cheias. A previsão por conjunto é uma técnica originalmente desenvolvida nas ciências atmosféricas e procura explorar as incertezas associadas às condições iniciais e/ou deficiências na estrutura dos modelos meteorológicos com intuito de melhorar sua previsibilidade. A partir de diferentes modelos meteorológicos ou de diferentes condições iniciais de um único modelo, são gerados um conjunto de previsões que representam possíveis trajetórias dos processos atmosféricos ao longo do horizonte de previsão. Pesquisas recentes, principalmente na Europa e Estados Unidos, têm mostrado resultados promissores do acoplamento de previsões meteorológicas por conjunto à modelos hidrológicos para realizar previsões de cheia. Essa pesquisa trata da avaliação do benefício da previsão de cheias por conjunto em curto prazo, em uma bacia de médio porte, utilizando dados e de ferramentas para previsão de vazões disponíveis em modo operacional no Brasil. Como estudo de caso foi utilizada a bacia do Rio Paraopeba (12.150km²), de clima tipicamente tropical, localizada na região sudeste do Brasil. A metodologia proposta para geração das previsões hidrológicas utilizou o modelo hidrológico MGB-IPH alimentado por um conjunto previsões de precipitação de diferentes modelos, com diferentes condições iniciais e parametrizações, dando origem a distintos cenários de previsão de vazões. Como parâmetro de referência na avaliação do desempenho das previsões por conjunto foi utilizada uma previsão hidrológica determinística única, baseada em uma previsão de precipitação obtida da combinação ótima de saídas de diversos modelos meteorológicos. As previsões foram realizadas retrospectivamente no período entre ago/2008 e mai/2011, sendo analisadas durante o período chuvoso dos anos hidrológicos (out-abr). Os resultados das previsões de cheia por conjunto foram avaliados através de uma representação determinística, considerando a média dos membros do conjunto, assim como através de uma representação probabilística, considerando todos os membros, através de medidas de desempenho específicas para esse fim. Na avaliação determinística, a média do conjunto hidrológico apresentou resultados similares aos obtido com a previsão determinística de referência, embora tenha apresentado benefício significativo em relação à maior parte dos membros do conjunto. A avaliação das previsões de cheia por conjunto, por sua vez, mostrou a existência de uma superestimativa e de um subespalhamento dos membros em relação às observações, sobretudo nos primeiros intervalos de tempo da previsão. Na comparação dos resultados das previsões de eventos do tipo dicótomos, que consideram a superação ou não de vazões limites de alerta, o 9º decil das previsões por conjunto mostrou superioridade em relação à previsão determinística de referência e mesmo a média do conjunto, sendo possível obter, na maior parte dos casos analisados, um aumento significativo na proporção de eventos corretamente previstos mantendo as taxas de alarmes falsos em níveis reduzidos. Esse benefício foi, de modo geral, maior para maiores antecedências e vazões limites, situações mais importantes num contexto de prevenção de cheias. Os resultados mostraram ainda que, em média, uma diminuição do número de membros do conjunto diminui seu desempenho nas previsões. / The forecasting and issuing of early warnings represent a key element to prevent the impacts of flood events. An alternative to extend forecasting horizon is the use of rainfall-runoff modeling coupled with precipitation forecasts derived from numerical weather prediction (NWP) models. However, NWP models have difficulty to accurately predict precipitation due to the extremely sensitivity of the initial conditions. Therefore, this variable represents one of the major sources of uncertainties in flood forecasting. A probabilistic or ensemble forecasting approach was originally developed in the atmospheric sciences and then applied to other research areas. This procedure explores the uncertainties related to initial conditions and deficiencies in the structure of NWP models intending to improve its predictability. Using different NWP models or different initial conditions of a single model, an ensemble forecast showing possible trajectories of atmospheric processes over the forecast horizon are produced. Recent studies developed in Europe and the United States have shown promising results in flood forecasting using hydrological models fed by NWP ensemble outputs. The present research assess the performance of short term ensemble flood forecasting in a medium size tropical basin, based on data and streamflow forecasting tools available in operational mode in Brazil. The Paraopeba River basin (12,150 km²), located in the upper portion of the São Francisco River basin, in Southeastern Brazil, was selected as a case study. The proposed methodology used the MGB-IPH hydrological coupled to an ensemble of precipitation forecasts generated by several models with different initial conditions and parameterizations. The results are several scenarios of streamflow forecasts. A single deterministic streamflow forecast, based on a quantitative precipitation forecast derived from the optimal combination of several outputs of NWP models, was used as a reference to assess the performance of the streamflow ensemble forecasts. The streamflow forecasts were performed between aug/2008 and may/2011 and were analyzed during the rainy seasons (austral summer). The results from the ensemble flood forecasting were assessed by deterministic and probabilistic performance measures, with the ensemble mean being used by the former, and specific assessment measure by the later. Based on the deterministic assessment, the ensemble mean showed similar results to those obtained by the deterministic reference forecast, although showing better performance over most of the ensemble members. Based on the probabilistic performance measures, however, results showed the existence of an ensemble overforecasting and underspread of the members in regard to observed values, especially during the first lead times. The results for predictions of dichotomous events, which mean exceeding or not flood warning thresholds, showed that the 9th decile of the ensemble over performed the deterministic forecast and even the ensemble mean. In most cases, it was observed an increase in the proportion of correctly forecasted events while keeping false alarm rates at low levels. This benefit was generally higher for higher flow thresholds and for longer lead times, which are the most important situations for flood mitigation. The results show, also, that, in average, a reduction in the number of ensemble members decreases the performance of ensemble flood forecasts.
10

Atualização de dados de entrada aplicada à previsão de vazões de curto prazo

Ticona Gutierrez, Juan Carlos January 2015 (has links)
Neste estudo, foi realizada uma revisão dos problemas observados na modelagem chuva-vazão, que influenciam a incerteza das condições iniciais dos processos de previsão de vazão. Foi realizada, também, uma revisão do estado da arte de alguns dos modelos de previsão de vazão de curto prazo utilizados no Brasil e, por último, uma revisão das metodologias de atualização de dados empregadas em trabalhos passados. Mas o principal enfoque deste estudo foi à elaboração de uma metodologia de atualização de dados de entrada, baseada na correção do desvio entre a vazão de saída de um modelo hidrológico e a vazão observada, por meio da perturbação dos dados de entrada de precipitação. O estudo de caso está composto por três bacias: Bacia do rio Ijuí, Bacia do rio Tesouras e a Bacia do rio Canoas. Estas bacias foram escolhidas, pois apresentam características distintas, tanto físicas quanto climáticas e, além disso, pela existência de estudos prévios com o modelo hidrológico utilizado neste trabalho. O processo de avaliação do método foi realizado em três etapas: 1) utilizando séries sintéticas; 2) utilizando séries reais; 3) previsão de vazões com atualização de dados. As duas primeiras etapas utilizaram o modelo em modo atualização (“off-line”) e, a última, o modelo em modo de previsão (“on-line”). Para a aplicação do método é necessário estabelecer condições de parada, sendo então, propostos dois conjuntos de critérios de parada. Com isto, foi estabelecido um conjunto adequado de critérios para que estes fiquem fixos para possibilitar futuras aplicações em outros modelos ou em outros estudos de casos. A técnica de previsão de vazão de curto prazo utilizada foi com base na chuva prevista, sendo adotada a previsão de chuva conhecida ou perfeita. Foram geradas previsões diárias de até 7 dias, durante 20 dias contínuos, escolhendo-se dois eventos de diferentes características em cada uma das bacias do estudo de caso. Em modo previsão os resultados se mostraram promissores, o objetivo desejado inicialmente foi atingido pelos dois conjuntos de critérios de parada propostos. Conseguiu-se ter um ganho significativo até o quarto dia de previsão, como, também, melhoras nos períodos de subidas do hidrograma, porém nos períodos de estiagens o ganho foi quase nulo. Além disso, este trabalho mostrou a viabilidade da utilização do modelo IPH II para a geração de previsões de vazões baseadas em previsão de chuva. / In this study a review of the problems observed in rainfall-runoff modeling has been made, which influence the uncertainty of initial conditions of flow forecasting processes, as well as a review of the state of the art of some of the short-term flow forecasting models used in Brazil and the data update methodologies used in many past jobs. However the focus of this study has been the development of a data entry update methodology based on the correction of the deviation between the output flow of a hydrological model and the observed flow, by means of the disruption of rainfall input data. The case study is composed of the three river basins: River Ijuí, River Tesouras and Canoas. These basins have been chosen due to their different characteristics, both physical and climate, besides having been used in previous studies of the hydrological model used. The evaluation process of the method is done in three steps: 1) using synthetic series; 2) using real series; 3) stream flow forecasting with data update, the first two with the model in update mode ("off-line") and the last in predict mode ("on-line"). For the application of this method is necessary to establish stopping conditions for application, and for this have been proposed two sets of stop criteria. With this, intended to establish an appropriate set of criteria so that they become fixed to permit future applications in other models. The short-term flow forecasting technique used has been based on the forecast rain, adopted the rain forecast known or perfect. Predictions have been generated daily up to 7 days, for 20 consecutive days, choosing two events of different features in each case study basins. In predict mode the results have been promissory, the desired goal initially achieved by the two sets of proposed stopping criteria. It was possible to have a significant gain until the fourth day forecast also improvements in periods of hydrograph increases but not during periods of drought the gain was almost nil. This work has also showed the ability to generate predictions of rain forecast based flow as the IPH II model in real time.

Page generated in 0.0452 seconds