Spelling suggestions: "subject:"princípio dde invariância dde canalle"" "subject:"princípio dde invariância dde detalle""
1 |
Um princípio de invariância para sistemas discretos / An invariance principle for discrete dynamic systemsCalliero, Taís Ruoso 19 July 2005 (has links)
Muitos sistemas físicos são modelados por sistemas dinâmicos discretos. Com o advento da tecnologia digital os sistemas discretos tornaram-se ainda mais importantes, sendo assim, o desenvolvimento de ferramentas analíticas para este tipo de sistema é de grande importância. Neste trabalho, estudam-se alguns dos principais resultados relacionados à estabilidade de sistemas dinâmicos discretos, e alguns novos são propostos. É bem conhecido na literatura que a estabilidade de um ponto de equilíbrio pode ser caracterizada pelo Método Direto de Lyapunov, via uma função auxiliar denominada função de Lyapunov. LaSalle, ao estudar a teoria de Lyapunov, estabeleceu uma importante relação entre função de Lyapunov e conjuntos limites de Birkhoff, que deu origem ao Princípio de Invariância de LaSalle. Este, entre outras coisas, permite a análise de estabilidade assintótica. Tanto o Método Direto de Lyapunov quanto o Princípio de Invariância requerem que a variação da função de Lyapunov seja não positiva ao longo das trajetórias do sistema. Em sistemas com comportamentos mais complexos, dificilmente encontra-se uma função com esta propriedade. Neste trabalho, propõe-se uma versão mais geral do Princípio de Invariância para sistemas discretos, a qual não exige que a variação da função de Lyapunov seja sempre não positiva. Com isto, a obtenção de funções deste tipo torna-se mais simples e muitos problemas, que antes não poderiam ser tratados com a teoria convencional, passam a ser tratados através deste novo resultado. Os resultados desenvolvi- dos, neste trabalho, são úteis para encontrar estimativas de atratores de sistemas não-lineares discretos. / Many physical systems are modeled by discrete dynamic systems. With the evolution digital technology, the discrete systems became still more important, so the development of analytic tools for this type of system has high importance nowadays. ln this work, some of the main results in stability of discrete dynamic systems are studied and some new ones are proposed. lt is well known in the literature that the stability of an equilibrium point may be characterized by the Lyapunov\'s Direct Method, with a function known as Lyapunov auxiliary function. LaSalle, when studying the Lyapunov theory, established an important relationship between Lyapunov function and Birkhoff limit sets. Then, he created the Lasalle\'s lnvariance Principle. This, among other features, allows the analysis of asymptotically stability. Both the Lyapunov\'s Direct Method and the lnvariance Principle request the variation of the Lyapunov function to be negative semidefinite along the system trajectory. In systems with more complex behaviors, a function is hardly found with this property. This work developed a more general version of the lnvariance Principle for discrete systems, which does not require the variation of the Lyapunov function to be always negative semidefinite. This new theory enables to find these functions easily and many insoluble problems, which could not be treated with the conventional theory before, become treatable by this new result. The results of this work are useful to find estimates of discrete nonlinear systems atractors.
|
2 |
O Princípio de Invariância de LaSalle estendido aplicado ao estudo de coerência de geradores e à análise de estabilidade transitória multi-'swing'. / The extension of the LaSalle's Invariance Principle applied to generator coherency studies and multi-swing transient stability analysis.Alberto, Luís Fernando Costa 07 April 2000 (has links)
As técnicas de análise de estabilidade transitória em sistemas elétricos de potência desenvolveram-se significativamente nas últimas duas décadas. Atualmente, o principal desafio dos pesquisadores é a obtenção de técnicas que sejam adequadasa análises em tempo real. Neste sentido, as idéias de Liapunov associadas ao Princípio de Invariância de LaSalle têm sido utilizadas para estimar a bacia de atraçãoo dos sistemas de potência. Embora esta filosofia seja bastante adequada a análises de estabilidade em tempo real, existem alguns obstáculos que impedem a aplicação da mesma à análise de sistemas reais. Dentre estes obstáculos poder-se-ia destacar a impossibilidade de utilização de modelos mais realísticos e a limitação da análise ao primeiro "swing". Em verdade, estes obstáculos estão intimamente relacionados com as limitações do Princípio de Invariância de LaSalle. Para superar estes problemas, propõe-se, neste trabalho, uma extensão deste princípio que é mais geral e portanto mais flexível do que o original. Aproveitando esta maior flexibilidade, duas aplicações em análise de estabilidade transitória são abordadas, ambas com o objetivo de reduzir os obstáculos anteriormente mencionados. Na primeira, propõe-se uma nova função energia para sistemas de potência com perdas nas linhas de transmissão. Mostra-se que esta é uma função de Liapunov no sentido mais geral da extensão do Princípio de Invariância de LaSalle, podendo portanto ser empregada para estudos de estabilidade. Na segunda, uma metodologia de análise de estabilidade multi-"swing" é proposta com base em uma análise de coerência de geradores.
|
3 |
O Princípio de Invariância de LaSalle estendido aplicado ao estudo de coerência de geradores e à análise de estabilidade transitória multi-'swing'. / The extension of the LaSalle's Invariance Principle applied to generator coherency studies and multi-swing transient stability analysis.Luís Fernando Costa Alberto 07 April 2000 (has links)
As técnicas de análise de estabilidade transitória em sistemas elétricos de potência desenvolveram-se significativamente nas últimas duas décadas. Atualmente, o principal desafio dos pesquisadores é a obtenção de técnicas que sejam adequadasa análises em tempo real. Neste sentido, as idéias de Liapunov associadas ao Princípio de Invariância de LaSalle têm sido utilizadas para estimar a bacia de atraçãoo dos sistemas de potência. Embora esta filosofia seja bastante adequada a análises de estabilidade em tempo real, existem alguns obstáculos que impedem a aplicação da mesma à análise de sistemas reais. Dentre estes obstáculos poder-se-ia destacar a impossibilidade de utilização de modelos mais realísticos e a limitação da análise ao primeiro "swing". Em verdade, estes obstáculos estão intimamente relacionados com as limitações do Princípio de Invariância de LaSalle. Para superar estes problemas, propõe-se, neste trabalho, uma extensão deste princípio que é mais geral e portanto mais flexível do que o original. Aproveitando esta maior flexibilidade, duas aplicações em análise de estabilidade transitória são abordadas, ambas com o objetivo de reduzir os obstáculos anteriormente mencionados. Na primeira, propõe-se uma nova função energia para sistemas de potência com perdas nas linhas de transmissão. Mostra-se que esta é uma função de Liapunov no sentido mais geral da extensão do Princípio de Invariância de LaSalle, podendo portanto ser empregada para estudos de estabilidade. Na segunda, uma metodologia de análise de estabilidade multi-"swing" é proposta com base em uma análise de coerência de geradores.
|
4 |
Um princípio de invariância para sistemas discretos / An invariance principle for discrete dynamic systemsTaís Ruoso Calliero 19 July 2005 (has links)
Muitos sistemas físicos são modelados por sistemas dinâmicos discretos. Com o advento da tecnologia digital os sistemas discretos tornaram-se ainda mais importantes, sendo assim, o desenvolvimento de ferramentas analíticas para este tipo de sistema é de grande importância. Neste trabalho, estudam-se alguns dos principais resultados relacionados à estabilidade de sistemas dinâmicos discretos, e alguns novos são propostos. É bem conhecido na literatura que a estabilidade de um ponto de equilíbrio pode ser caracterizada pelo Método Direto de Lyapunov, via uma função auxiliar denominada função de Lyapunov. LaSalle, ao estudar a teoria de Lyapunov, estabeleceu uma importante relação entre função de Lyapunov e conjuntos limites de Birkhoff, que deu origem ao Princípio de Invariância de LaSalle. Este, entre outras coisas, permite a análise de estabilidade assintótica. Tanto o Método Direto de Lyapunov quanto o Princípio de Invariância requerem que a variação da função de Lyapunov seja não positiva ao longo das trajetórias do sistema. Em sistemas com comportamentos mais complexos, dificilmente encontra-se uma função com esta propriedade. Neste trabalho, propõe-se uma versão mais geral do Princípio de Invariância para sistemas discretos, a qual não exige que a variação da função de Lyapunov seja sempre não positiva. Com isto, a obtenção de funções deste tipo torna-se mais simples e muitos problemas, que antes não poderiam ser tratados com a teoria convencional, passam a ser tratados através deste novo resultado. Os resultados desenvolvi- dos, neste trabalho, são úteis para encontrar estimativas de atratores de sistemas não-lineares discretos. / Many physical systems are modeled by discrete dynamic systems. With the evolution digital technology, the discrete systems became still more important, so the development of analytic tools for this type of system has high importance nowadays. ln this work, some of the main results in stability of discrete dynamic systems are studied and some new ones are proposed. lt is well known in the literature that the stability of an equilibrium point may be characterized by the Lyapunov\'s Direct Method, with a function known as Lyapunov auxiliary function. LaSalle, when studying the Lyapunov theory, established an important relationship between Lyapunov function and Birkhoff limit sets. Then, he created the Lasalle\'s lnvariance Principle. This, among other features, allows the analysis of asymptotically stability. Both the Lyapunov\'s Direct Method and the lnvariance Principle request the variation of the Lyapunov function to be negative semidefinite along the system trajectory. In systems with more complex behaviors, a function is hardly found with this property. This work developed a more general version of the lnvariance Principle for discrete systems, which does not require the variation of the Lyapunov function to be always negative semidefinite. This new theory enables to find these functions easily and many insoluble problems, which could not be treated with the conventional theory before, become treatable by this new result. The results of this work are useful to find estimates of discrete nonlinear systems atractors.
|
Page generated in 0.1225 seconds