Spelling suggestions: "subject:"principal component 2analysis(PCA)"" "subject:"principal component 3analysis(PCA)""
41 |
Doppler Radar Data Processing And ClassificationAygar, Alper 01 September 2008 (has links) (PDF)
In this thesis, improving the performance of the automatic recognition of the Doppler radar targets is studied. The radar used in this study is a ground-surveillance doppler radar. Target types are car, truck, bus, tank, helicopter, moving man and running man. The input of this thesis is the output of the real doppler radar signals which are normalized and preprocessed (TRP vectors: Target Recognition Pattern vectors) in the doctorate thesis by Erdogan (2002). TRP vectors are normalized and homogenized doppler radar target signals with respect to target speed, target aspect angle and target range. Some target classes have repetitions in time in their TRPs. By the use of these repetitions, improvement of the target type classification performance is studied. K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) algorithms are used for doppler radar target classification and the results are evaluated. Before classification PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis), NMF (Nonnegative Matrix Factorization) and ICA (Independent Component Analysis) are implemented and applied to normalized doppler radar signals for feature extraction and dimension reduction in an efficient way. These techniques transform the input vectors, which are the normalized doppler radar signals, to another space. The effects of the implementation of these feature extraction algoritms and the use of the repetitions in doppler radar target signals on the doppler radar target classification performance are studied.
|
42 |
Spatio-temporal dynamics in land use and habit fragmentation in Sandveld, South AfricaJames Takawira Magidi January 2010 (has links)
<p>This research assessed landuse changes and trends in vegetation cover in the Sandveld, using remote sensing images. Landsat TM satellite images of 1990, 2004 and 2007 were classified using the maximum likelihood classifier into seven landuse classes, namely water, agriculture, fire patches, natural vegetation, wetlands, disturbed veld, and open sands. Change detection using remote sensing algorithms and landscape metrics was performed on these multi-temporal landuse maps using the Land Change Modeller and Patch Analyst respectively. Markov stochastic modelling techniques were used to predict future scenarios in landuse change based on the classified images and their transitional probabilities. MODIS NDVI multi-temporal datasets with a 16day temporal resolution were used to assess seasonal and annual trends in vegetation cover using time series analysis (PCA and time profiling).Results indicated that natural vegetation decreased from 46% to 31% of the total landscape between 1990 and 2007 and these biodiversity losses were attributed to an increasing agriculture footprint. Predicted future scenario based on transitional probabilities revealed a continual loss in natural habitat and increase in the agricultural footprint. Time series analysis results (principal components and temporal profiles) suggested that the landscape has a high degree of overall dynamic change with pronounced inter and intra-annual changes and there was an overall increase in greenness associated with increase in agricultural activity. The study concluded that without future conservation interventions natural habitats would continue to disappear, a condition that will impact heavily on biodiversity and significant waterdependent ecosystems such as wetlands. This has significant implications for the long-term provision of water from ground water reserves and for the overall sustainability of current agricultural practices.</p>
|
43 |
Metoder för informationsoptimering vid organisk syntesNordahl, Åke January 1990 (has links)
<p>Diss. (sammanfattning) Umeå : Umeå universitet, 1990, härtill 5 uppsatser.</p> / digitalisering@umu.se
|
44 |
In silico tools in risk assessment : of industrial chemicals in general and non-dioxin-like PCBs in particularStenberg, Mia January 2012 (has links)
Industrial chemicals in European Union produced or imported in volumes above 1 tonne annually, necessitate a registration within REACH. A common problem, concerning these chemicals, is deficient information and lack of data for assessing the hazards posed to human health and the environment. Animal studies for the type of toxicological information needed are both expensive and time consuming, and to that an ethical aspect is added. Alternative methods to animal testing are thereby requested. REACH have called for an increased use of in silico tools for non-testing data as structure-activity relationships (SARs), quantitative structure-activity relationships (QSARs), and read-across. The main objective of the studies underlying this thesis is related to explore and refine the use of in silico tools in a risk assessment context of industrial chemicals. In particular, try to relate properties of the molecular structure to the toxic effect of the chemical substance, by using principles and methods of computational chemistry. The initial study was a survey of all industrial chemicals; the Industrial chemical map was created. A part of this map was identified including chemicals of potential concern. Secondly, the environmental pollutants, polychlorinated biphenyls (PCBs) were examined and in particular the non-dioxin-like PCBs (NDL-PCBs). A set of 20 NDL-PCBs was selected to represent the 178 PCB congeners with three to seven chlorine substituents. The selection procedure was a combined process including statistical molecular design for a representative selection and expert judgements to be able to include congeners of specific interest. The 20 selected congeners were tested in vitro in as much as 17 different assays. The data from the screening process was turned into interpretable toxicity profiles with multivariate methods, used for investigation of potential classes of NDL-PCBs. It was shown that NDL-PCBs cannot be treated as one group of substances with similar mechanisms of action. Two groups of congeners were identified. A group including in general lower chlorinated congeners with a higher degree of ortho substitution showed a higher potency in more assays (including all neurotoxic assays). A second group included abundant congeners with a similar toxic profile that might contribute to a common toxic burden. To investigate the structure-activity pattern of PCBs effect on DAT in rat striatal synaptosomes, ten additional congeners were selected and tested in vitro. NDL-PCBs were shown to be potent inhibitors of DAT binding. The congeners with highest DAT inhibiting potency were tetra- and penta-chlorinated with 2-3 chlorine atoms in ortho-position. The model was not able to distinguish the congeners with activities in the lower μM range, which could be explained by a relatively unspecific response for the lower ortho chlorinated PCBs. / Den europeiska kemikalielagstiftningen REACH har fastställt att kemikalier som produceras eller importeras i en mängd över 1 ton per år, måste registreras och riskbedömmas. En uppskattad siffra är att detta gäller för 30 000 kemikalier. Problemet är dock att data och information ofta är otillräcklig för en riskbedömning. Till stor del har djurförsök använts för effektdata, men djurförsök är både kostsamt och tidskrävande, dessutom kommer den etiska aspekten in. REACH har därför efterfrågat en undersökning av möjligheten att använda in silico verktyg för att bidra med efterfrågad data och information. In silico har en ungefärlig betydelse av i datorn, och innebär beräkningsmodeller och metoder som används för att få information om kemikaliers egenskaper och toxicitet. Avhandlingens syfte är att utforska möjligheten och förfina användningen av in silico verktyg för att skapa information för riskbedömning av industrikemikalier. Avhandlingen beskriver kvantitativa modeller framtagna med kemometriska metoder för att prediktera, dvs förutsäga specifika kemikaliers toxiska effekt. I den första studien (I) undersöktes 56 072 organiska industrikemikalier. Med multivariata metoder skapades en karta över industrikemikalierna som beskrev dess kemiska och fysikaliska egenskaper. Kartan användes för jämförelser med kända och potentiella miljöfarliga kemikalier. De mest kända miljöföroreningarna visade sig ha liknande principal egenskaper och grupperade i kartan. Genom att specialstudera den delen av kartan skulle man kunna identifiera fler potentiellt farliga kemiska substanser. I studie två till fyra (II-IV) specialstuderades miljögiftet PCB. Tjugo PCBs valdes ut så att de strukturellt och fysiokemiskt representerade de 178 PCB kongenerna med tre till sju klorsubstituenter. Den toxikologiska effekten hos dessa 20 PCBs undersöktes i 17 olika in vitro assays. De toxikologiska profilerna för de 20 testade kongenerna fastställdes, dvs vilka som har liknande skadliga effekter och vilka som skiljer sig åt. De toxicologiska profilerna användes för klassificering av PCBs. Kvantitativa modeller utvecklades för prediktioner, dvs att förutbestämma effekter hos ännu icke testade PCBs, och för att få ytterligare kunskap om strukturella egenskaper som ger icke önskvärda effekter i människa och natur. Information som kan användas vid en framtida riskbedömning av icke-dioxinlika PCBs. Den sista studien (IV) är en struktur-aktivitets studie som undersöker de icke-dioxinlika PCBernas hämmande effekt av signalsubstansen dopamin i hjärnan.
|
45 |
Análise de Sinais Eletrocardiográficos Atriais Utilizando Componentes Principais e Mapas Auto-Organizáveis. / Atrial Eletrocardiographics Signals Analysis Using Principal Components and Self-Organizing Maps.Coutinho, Paulo Silva 21 November 2008 (has links)
A análise de sinais provenientes de um eletrocardiograma (ECG) pode ser de grande importância para avaliação do comportamento cardíaco de um paciente. Os sinais de ECG possuem características específicas de acordo com os tipos de arritmias e sua classificação depende da morfologia do sinal. Neste trabalho é considerada uma abordagem híbrida utilizando análise de componentes principais (PCA) e mapas auto-organizáveis (SOM) para classificação de agrupamentos provenientes de arritmias como a taquicardia sinusal e, principalmente, fibrilação atrial. Nesse sentido, O PCA é utilizado como um pré-processador buscando suprimir sinais de atividades ventriculares, de maneira que a atividade atrial presente no ECG seja evidenciada sob a forma das ondas f. A Rede Neural SOM, é usada na classificação dos padrões de fibrilação atrial e seus agrupamentos / A análise de sinais provenientes de um eletrocardiograma (ECG) pode ser de grande importância para avaliação do comportamento cardíaco de um paciente. Os sinais de ECG possuem características específicas de acordo com os tipos de arritmias e sua classificação depende da morfologia do sinal. Neste trabalho é considerada uma abordagem híbrida utilizando análise de componentes principais (PCA) e mapas auto-organizáveis (SOM) para classificação de agrupamentos provenientes de arritmias como a taquicardia sinusal e, principalmente, fibrilação atrial. Nesse sentido, O PCA é utilizado como um pré-processador buscando suprimir sinais de atividades ventriculares, de maneira que a atividade atrial presente no ECG seja evidenciada sob a forma das ondas f. A Rede Neural SOM, é usada na classificação dos padrões de fibrilação atrial e seus agrupamentos
|
46 |
Monitoramento e avaliação de desempenho de sistemas MPC utilizando métodos estatísticos multivariados / Monitoring and performance assessment of MPC system using multivariate statistical methodsFontes, Nayanne Maria Garcia Rego 30 January 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Monitoring of process control systems is extremely important for industries to ensure the quality of the product and the safety of the process. Predictive controllers, also known by MPC (Model Predictive Control), usually has a well performance initially. However, after a period, many factors contribute to the deterioration of its performance. This highlights the importance of monitoring the MPC control systems. In this work, tools based on multivariate statistical methods are discussed and applied to the problem of monitoring and Performance Assessment of predictive controllers. The methods presented here are: PCA (Principal Component Analysis) and ICA (Independent Component Analysis). Both are techniques that use data collected directly from the process. The first is widely used in Performance Assessment of predictive controllers. The second is a more recent technique that has arisen, mainly in order to be used in fault detection systems. The analyzes are made when applied in simulated processes characteristic of the petrochemical industry operating under MPC control. / O monitoramento de sistemas de controle de processos é extremamente importante no que diz respeito às indústrias, para garantir a qualidade do que é produzido e a segurança do processo. Os controladores preditivos, também conhecidos pela sigla em inglês MPC (Model Predictive Control), costumam ter um bom desempenho inicialmente. Entretanto, após um certo período, muitos fatores contribuem para a deterioração de seu desempenho. Isto evidencia a importância do monitoramento dos sistemas de controle MPC. Neste trabalho aborda-se ferramentas, baseada em métodos estatísticos multivariados, aplicados ao problema de monitoramento e avaliação de desempenho de controladores preditivos. Os métodos aqui apresentados são: o PCA (Análise por componentes principais) e o ICA (Análise por componentes independentes). Ambas são técnicas que utilizam dados coletados diretamente do processo. O primeiro é largamente utilizado na avaliação de desempenho de controladores preditivos. Já o segundo, é uma técnica mais recente que surgiu, principalmente, com o intuito de ser utilizado em sistemas de detecção de falhas. As análises são feitas quando aplicadas em processos simulados característicos da indústria petroquímica operando sob controle MPC.
|
47 |
Monitoramento e avaliação de desempenho de sistemas MPC utilizando métodos estatísticos multivariados / Monitoring and performance assessment of MPC system using multivariate statistical methodsFontes, Nayanne Maria Garcia Rego 30 January 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Monitoring of process control systems is extremely important for industries to ensure the quality of the product and the safety of the process. Predictive controllers, also known by MPC (Model Predictive Control), usually has a well performance initially. However, after a period, many factors contribute to the deterioration of its performance. This highlights the importance of monitoring the MPC control systems. In this work, tools based on multivariate statistical methods are discussed and applied to the problem of monitoring and Performance Assessment of predictive controllers. The methods presented here are: PCA (Principal Component Analysis) and ICA (Independent Component Analysis). Both are techniques that use data collected directly from the process. The first is widely used in Performance Assessment of predictive controllers. The second is a more recent technique that has arisen, mainly in order to be used in fault detection systems. The analyzes are made when applied in simulated processes characteristic of the petrochemical industry operating under MPC control. / O monitoramento de sistemas de controle de processos é extremamente importante no que diz respeito às indústrias, para garantir a qualidade do que é produzido e a segurança do processo. Os controladores preditivos, também conhecidos pela sigla em inglês MPC (Model Predictive Control), costumam ter um bom desempenho inicialmente. Entretanto, após um certo período, muitos fatores contribuem para a deterioração de seu desempenho. Isto evidencia a importância do monitoramento dos sistemas de controle MPC. Neste trabalho aborda-se ferramentas, baseada em métodos estatísticos multivariados, aplicados ao problema de monitoramento e avaliação de desempenho de controladores preditivos. Os métodos aqui apresentados são: o PCA (Análise por componentes principais) e o ICA (Análise por componentes independentes). Ambas são técnicas que utilizam dados coletados diretamente do processo. O primeiro é largamente utilizado na avaliação de desempenho de controladores preditivos. Já o segundo, é uma técnica mais recente que surgiu, principalmente, com o intuito de ser utilizado em sistemas de detecção de falhas. As análises são feitas quando aplicadas em processos simulados característicos da indústria petroquímica operando sob controle MPC.
|
48 |
Tipificação de méis do estado de Sergipe através do perfil químico dos compostos voláteis obtidos por headspace dinâmico seguido por cromatografia em fase gasosa acoplada a espectrometria de massas (CG/EM)Brito, Givanilton 29 February 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Among the products of the hive, honey is considered the principal, standing out as natural food and for having multiple pharmacological applications. Honey can be produced
by honey bees (Apis mellifera, L.) from the nectar, fruit, plant secretions and excretions of aphids or other sweetened solutions.Their nutritive power, pharmacologic and commercial
value depends on its botanical origin, which can be obtained through classical methods as sensory evaluation, physicochemical analyses or melissopalynology. Although, these methods require much experience of the analyst and are costly.In view of the current difficulties in conducting these analyses, methods based on the study of volatile constituents have emerged as an alternative in the search for the source of compound markers of floral honeys. For the identification of these compounds, techniques such as solid in solid phase (SPME) and dynamic headspace (HSD) followed by analysis on gas chromatography coupled to mass spectrometer (GC-MS) are suggested. In this work, different honeyproducing regions in the State of Sergipe were studied, as well as samples of honey originated from other states of Brazil, purchased in local supermarkets. Analyses of volatile
components were obtained by dynamic headspace using Porapak Q® and Peat in natura as adsorbent materials. For both, parameters such as amount of sample, salt addition, time and temperature of extractionhave been optimized. Optimization, made possible the identification of 112 different compounds belonging to classes of aliphatic alcohols,
aliphatic aldehydes, benzene derivatives, monoterpene hydrocarbons, oxygenated hydrocarbons, norisoprenoids, sesquiterpenes, oxygenated sesquiterpenes, carboxylic acids
and others. Among these, a group of senior compounds were studied by principal components analysis and hierarchical cluster analysis. With these analyses was likely to
identify the components with biggest weights in the samples and cluster them into five groups with a similarity of 48% based on Euclidean distance. Among the weighty compounds are furfuraldehyde, benzaldehyde, cis-linalool oxide (furanoid), trans-linalool oxide (furanoid), linalool, hotrienol, 4-ketoisoforone, aldehyde lilac (isomer I), cis-linalool oxide (pyranoid) and -terpineol. / Dentre os produtos apícolas o mel é considerado o principal por se destacar como alimento natural e ter várias aplicações farmacológicas, podendo ser produzido por abelhas Apis mellifera a partir do néctar, secreções das plantas e frutos, excreções de afídeos e outras soluções adocicadas. Seu poder nutritivo, farmacológico e valor comercial dependem de sua origem botânica, a qual pode ser obtida através de métodos clássicos como a avaliação sensorial, a melissopalinologia ou análises físico-químicas, porém estes métodos exigem muita experiência do analista e são dispendiosas. Em virtude das dificuldades atuais em realizar essas análises os métodos baseados no estudo dos constituintes voláteis têm surgido como uma alternativa na procura de compostos marcadores da origem floral de méis. Para a identificação destes compostos, técnicas como a microextração em fase sólida (SPME) e headspace dinâmico (HSD) seguido de análise em cromatógrafo em fase gasosa/espectrômetro de massas (CG/EM) são sugeridas. Neste trabalho foram estudados méis de diferentes regiões produtoras do estado de Sergipe, bem como amostras de méis adquiridos em supermercado de Aracaju oriundas de outros estados do Brasil através da análise dos componentes voláteis
obtidos por headspace dinâmico utilizando Porapak Q® e Turfa in natura como materiais adsorventes. Para tanto foram otimizados parâmetros como quantidade de amostra, adição de sal, tempo e temperatura de extração. Nas condições otimizadas foi possível identificar 112 diferentes compostos pertencentes às classes dos álcoois alifáticos, benzenóides, aldeídos alifáticos, hidrocarbonetos lineares, monoterpenos,
monoterpenos oxigenados, sesquiterpenos, sesquiterpenos oxigenados, norisoprenóides, ácidos carboxílicos e outros. Dentre estes, um grupo de compostos majoritários foram
estudados por análise de componentes principais e análise de agrupamento hierárquico. Com estas análises foi possível identificar os componentes de maiores pesos das
amostras e agrupá-las em cinco grupos com uma similaridade de 48%, tendo como base a distância Euclidiana. Dentre os compostos de maiores pesos estão o furfural, benzaldeído, cis-óxido de linalol (furanóide), trans-óxido de linalol (furanóide), linalol, hotrienol, 4-ceto-isoforona, lilac aldeído (isômero I), cis-óxido de linalol (piranóide) e o -terpineol.
|
49 |
Detecção de falhas com PCA e PLS aplicados a uma planta didáticaBritto, Rodrigo da Silva 27 February 2014 (has links)
A fault monitoring system in general, which, beside the detection, isolation, diagnosis and fault recuperation steps is a research area of great interest, since the fault occurrence may lead to negative consequences on different levels on social, economical and environmental bases. With the increasing complexity of the industrial process, it is often necessary a quick detection leading to an optimized fault management system and therefore avoiding the loss of material and human resources. This work develops a study on fault detection statistical techniques applied to a didactic plant. The didactic plant deployed in this study comprises a controlled simple industrial process. For the fault detection in this process it were applied the main statistical methods: Principal Component Analysis (PCA) and Partial Least Squares (PLS). Those methods were implemented and applied on the process aiming a comparative analysis concerning themselves. As a result, the methods were able to detect every kind of emulated fault, with little or none detection delay and with similar performances. / Um sistema de monitoramento de falhas em geral, que além da detecção inclui etapas de isolamento, diagnóstico e recuperação das falhas, é uma área de pesquisa de grande interesse, uma vez que a ocorrência de falhas pode ter consequências negativas em diversos níveis, com impactos socioeconômicos e ambientais. Em processos industriais cada vez mais complexos, é necessária uma rápida detecção de falhas, exigindo um sistema de gerenciamento de falhas otimizado, de modo a evitar perdas de recursos materiais e humanos. Este trabalho desenvolve um estudo sobre técnicas estatísticas de detecção de falhas aplicadas numa planta didática. A planta didática empregada no estudo compreende um processo industrial simples controlado. Para a detecção das falhas nesse processo, foram aplicados os principais métodos estatísticos: Análise de Componentes Principais (PCA) e Mínimos Quadrados Parciais (PLS). Estes métodos foram implementados e aplicados ao processo objetivando uma análise comparativa entre os mesmos. Como resultado, os métodos foram capazes de detectar todos os diferentes tipos de falhas emuladas, com pouco ou nenhum atraso na detecção e com desempenhos similares.
|
50 |
Spatio-temporal dynamics in land use and habit fragmentation in Sandveld, South AfricaMagidi, James Takawira January 2010 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) - MSc (Biodiv and Cons Biol) / This research assessed landuse changes and trends in vegetation cover in the Sandveld, using remote sensing images. Landsat TM satellite images of 1990, 2004 and 2007 were classified using the maximum likelihood classifier into seven landuse classes, namely water, agriculture, fire patches, natural vegetation, wetlands, disturbed veld, and open sands. Change detection using remote sensing algorithms and landscape metrics was performed on these multi-temporal landuse maps using the Land Change Modeller and Patch Analyst respectively. Markov stochastic modelling techniques were used to predict future scenarios in landuse change based on the classified images and their transitional probabilities. MODIS NDVI multi-temporal datasets with a 16day temporal resolution were used to assess seasonal and annual trends in vegetation cover using time series analysis (PCA and time profiling).Results indicated that natural vegetation decreased from 46% to 31% of the total landscape between 1990 and 2007 and these biodiversity losses were attributed to an increasing agriculture footprint. Predicted future scenario based on transitional probabilities revealed a continual loss in natural habitat and increase in the agricultural footprint. Time series analysis results (principal components and temporal profiles) suggested that the landscape has a high degree of overall dynamic change with pronounced inter and intra-annual changes and there was an overall increase in greenness associated with increase in agricultural activity. The study concluded that without future conservation interventions natural habitats would continue to disappear, a condition that will impact heavily on biodiversity and significant waterdependent ecosystems such as wetlands. This has significant implications for the long-term provision of water from ground water reserves and for the overall sustainability of current agricultural practices. / South Africa
|
Page generated in 0.091 seconds