Spelling suggestions: "subject:"principe d’incertitudes"" "subject:"principe d’l'incertitude""
1 |
Contributions to the analysis of multicomponent signals : synchrosqueezing and associated methods / Contributions à l'analyse des signaux multicomposantes : synchrosqueezing et méthodes associéesPham, Duong Hung 17 September 2018 (has links)
De nombreux signaux physiques incluant des signaux audio (musique, parole), médicaux (ECG, PCG), de mammifères marins ou d'ondes gravitationnelles peuvent être modélisés comme une superposition d'ondes modulées en amplitude et en fréquence (modes AM-FM), appelés signaux multicomposantes (SMCs). L'analyse temps-fréquence (TF) joue un rôle central pour la caractérisation de tels signaux et, dans ce cadre, diverses méthodes ont été développées au cours de la dernière décennie. Néanmoins, ces méthodes souffrent d'une limitation intrinsèque appelée le principe d'incertitude. Dans ce contexte, la méthode de réallocation (MR) a été développée visant à améliorer les représentations TF (RTFs) données respectivement par la transformée de Fourier à court terme (TFCT) et la transformée en ondelette continue (TOC), en les concentrant autour des lignes de crête correspondant aux fréquences instantanées. Malheureusement, elle ne permet pas de reconstruction des modes, contrairement à sa variante récente connue sous le nom de transformée synchrosqueezée (TSS). Toutefois, de nombreux problèmes associés à cette dernière restent encore à traiter tels que le traitement des fortes modulations en fréquence, la reconstruction des modes d'un SMC à partir de sa TFCT sous-échantillonnée or l'estimation des signatures TF de modes irréguliers et discontinus. Cette thèse traite principalement de tels problèmes afin de construire des nouvelles méthodes TF inversibles plus puissantes et précises pour l'analyse des SMCs.Cette thèse offre six nouvelles contributions précieuses. La première contribution introduit une extension de TSS d'ordre deux appliqué à la TOC ainsi qu'une discussion sur son analyse théorique et sa mise en œuvre pratique. La seconde contribution propose une généralisation des techniques de synchrosqueezing construites sur la TFCT, connue sous le nom de transformée synchrosqueezée d'ordre supérieur (FTSSn), qui permet de mieux traiter une large gamme de SMCs. La troisième contribution propose une nouvelle technique utilisant sur la transformée synchrosqueezée appliquée à la TFCT de second ordre (FTSS2) et une procédure de démodulation, appelée DTSS2, conduisant à une meilleure performance de la reconstruction des modes. La quatrième contribution est celle d'une nouvelle approche permettant la récupération des modes d'un SMC à partir de sa TFCT sous-échantillonnée. La cinquième contribution présente une technique améliorée, appelée calcul de représentation des contours adaptatifs (CRCA), utilisée pour une estimation efficace des signatures TF d'une plus grande classe de SMCs. La dernière contribution est celle d'une analyse conjointe entre l'CRCA et la factorisation matricielle non-négative (FMN) pour un débruitage performant des signaux phonocardiogrammes (PCG). / Many physical signals including audio (music, speech), medical data (ECG, PCG), marine mammals or gravitational-waves can be accurately modeled as a superposition of amplitude and frequency-modulated waves (AM-FM modes), called multicomponent signals (MCSs). Time-frequency (TF) analysis plays a central role in characterizing such signals and in that framework, numerous methods have been proposed over the last decade. However, these methods suffer from an intrinsic limitation known as the uncertainty principle. In this regard, reassignment method (RM) was developed with the purpose of sharpening TF representations (TFRs) given respectively by the short-time Fourier transform (STFT) or the continuous wavelet transform (CWT). Unfortunately, it did not allow for mode reconstruction, in opposition to its recent variant known as synchrosqueezing transforms (SST). Nevertheless, many critical problems associated with the latter still remain to be addressed such as the weak frequency modulation condition, the mode retrieval of an MCS from its downsampled STFT or the TF signature estimation of irregular and discontinuous signals. This dissertation mainly deals with such problems in order to provide more powerful and accurate invertible TF methods for analyzing MCSs.This dissertation gives six valuable contributions. The first one introduces a second-order extension of wavelet-based SST along with a discussion on its theoretical analysis and practical implementation. The second one puts forward a generalization of existing STFT-based synchrosqueezing techniques known as the high-order STFT-based SST (FSSTn) that enables to better handle a wide range of MCSs. The third one proposes a new technique established on the second-order STFT-based SST (FSST2) and demodulation procedure, called demodulation-FSST2-based technique (DSST2), enabling a better performance of mode reconstruction. The fourth contribution is that of a novel approach allowing for the retrieval of modes of an MCS from its downsampled STFT. The fifth one presents an improved method developed in the reassignment framework, called adaptive contour representation computation (ACRC), for an efficient estimation of TF signatures of a larger class of MCSs. The last contribution is that of a joint analysis of ACRC with non-negative matrix factorization (NMF) to enable an effective denoising of phonocardiogram (PCG) signals.
|
2 |
Block-sparse models in multi-modality : application to the inverse model in EEG/MEG / Des modèles bloc-parcimonieux en multi-modalité : application au problème inverse en EEG/MEGAfdideh, Fardin 12 October 2018 (has links)
De nombreux phénomènes naturels sont trop complexes pour être pleinement reconnus par un seul instrument de mesure ou par une seule modalité. Par conséquent, le domaine de recherche de la multi-modalité a émergé pour mieux identifier les caractéristiques riches du phénomène naturel de la multi-propriété naturelle, en analysant conjointement les données collectées à partir d’uniques modalités, qui sont en quelque sorte complémentaires. Dans notre étude, le phénomène d’intérêt multi-propriétés est l’activité du cerveau humain et nous nous intéressons à mieux la localiser au moyen de ses propriétés électromagnétiques, mesurables de manière non invasive. En neurophysiologie, l’électroencéphalographie (EEG) et la magnétoencéphalographie (MEG) constituent un moyen courant de mesurer les propriétés électriques et magnétiques de l’activité cérébrale. Notre application dans le monde réel, à savoir le problème de reconstruction de source EEG / MEG, est un problème fondamental en neurosciences, allant des sciences cognitives à la neuropathologie en passant par la planification chirurgicale. Considérant que le problème de reconstruction de source EEG /MEG peut être reformulé en un système d’équations linéaires sous-déterminé, la solution (l’activité estimée de la source cérébrale) doit être suffisamment parcimonieuse pour pouvoir être récupérée de manière unique. La quantité de parcimonie est déterminée par les conditions dites de récupération. Cependant, dans les problèmes de grande dimension, les conditions de récupération conventionnelles sont extrêmement strictes. En regroupant les colonnes cohérentes d’un dictionnaire, on pourrait obtenir une structure plus incohérente. Cette stratégie a été proposée en tant que cadre d’identification de structure de bloc, ce qui aboutit à la segmentation automatique de l’espace source du cerveau, sans utiliser aucune information sur l’activité des sources du cerveau et les signaux EEG / MEG. En dépit du dictionnaire structuré en blocs moins cohérent qui en a résulté, la condition de récupération conventionnelle n’est plus en mesure de calculer la caractérisation de la cohérence. Afin de relever le défi mentionné, le cadre général des conditions de récupération exactes par bloc-parcimonie, comprenant trois conditions théoriques et une condition dépendante de l’algorithme, a été proposé. Enfin, nous avons étudié la multi-modalité EEG et MEG et montré qu’en combinant les deux modalités, des régions cérébrales plus raffinées sont apparues / Three main challenges have been addressed in this thesis, in three chapters.First challenge is about the ineffectiveness of some classic methods in high-dimensional problems. This challenge is partially addressed through the idea of clustering the coherent parts of a dictionary based on the proposed characterisation, in order to create more incoherent atomic entities in the dictionary, which is proposed as a block structure identification framework. The more incoherent atomic entities, the more improvement in the exact recovery conditions. In addition, we applied the mentioned clustering idea to real-world EEG/MEG leadfields to segment the brain source space, without using any information about the brain sources activity and EEG/MEG signals. Second challenge raises when classic recovery conditions cannot be established for the new concept of constraint, i.e., block-sparsity. Therefore, as the second research orientation, we developed a general framework for block-sparse exact recovery conditions, i.e., four theoretical and one algorithmic-dependent conditions, which ensure the uniqueness of the block-sparse solution of corresponding weighted mixed-norm optimisation problem in an underdetermined system of linear equations. The mentioned generality of the framework is in terms of the properties of the underdetermined system of linear equations, extracted dictionary characterisations, optimisation problems, and ultimately the recovery conditions. Finally, the combination of different information of a same phenomenon is the subject of the third challenge, which is addressed in the last part of dissertation with application to brain source space segmentation. More precisely, we showed that by combining the EEG and MEG leadfields and gaining the electromagnetic properties of the head, more refined brain regions appeared.
|
Page generated in 0.0531 seconds