Spelling suggestions: "subject:"printing."" "subject:"aprinting.""
551 |
Ultrasonic droplet generation jetting technology for additive manufacturing an initial investigation /Margolin, Lauren. January 2007 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2007. / Rosen, David, Committee Chair ; O'Connor, Jerry, Committee Member ; Fedorov, Andrei, Committee Member.
|
552 |
Holding steady survival, migration, and the future prospects in the food and printing industries in Philadelphia County, Pa. /Koski, Ben. January 2005 (has links) (PDF)
Thesis (B.A.)--Bryn Mawr College, Growth and Structure of Cities Program, 2005. / Includes bibliographical references.
|
553 |
Friesens Corporation, printers in Mennonite Manitoba, 1951-1995Thiessen, Janis January 1997 (has links) (PDF)
No description available.
|
554 |
The relationship between typographic design and photography : effectively combining type with image /Bell, Kristen Leigh. January 1993 (has links)
Thesis (M.F.A.)--Rochester Institute of Technology, 1993. / Typescript. Includes bibliographical references.
|
555 |
Inkjet Printed Radio Frequency Passive ComponentsMcKerricher, Garret 12 1900 (has links)
Inkjet printing is a mature technique for colourful graphic arts. It excels at customized, large area, high resolution, and small volume production. With the developments in conductive, and dielectric inks, there is potential for large area inkjet electronics fabrication. Passive radio frequency devices can benefit greatly from a printing process, since the size of these devices is defined by the frequency of operation. The large size of radio frequency passives means that they either take up expensive space “on chip” or that they are fabricated on a separate lower cost substrate and somehow bonded to the chips. This has hindered cost-sensitive high volume applications such as radio frequency identification tags. Substantial work has been undertaken on inkjet-printed conductors for passive antennas on microwave substrates and even paper, yet there has been little work on the printing of the dielectric materials aimed at radio frequency passives. Both the conductor and dielectric need to be integrated to create a multilayer inkjet printing process that is capable of making quality passives such as capacitors and inductors. Three inkjet printed dielectrics are investigated in this thesis: a ceramic (alumina), a thermal-cured polymer (poly 4 vinyl phenol), and a UV-cured polymer (acrylic based). For the conductor, both a silver nanoparticle ink as well as a custom in-house formulated particle-free silver ink are explored. The focus is on passives, mainly capacitors and inductors. Compared to low frequency electronics, radio frequency components have additional sensitivity regarding skin depth of the conductor and surface roughness, as well as dielectric constant and loss tangent of the dielectric. These concerns are investigated with the aim of making the highest quality components possible and to understand the current limitations of inkjet-fabricated radio frequency devices. An inkjet-printed alumina dielectric that provides quality factors of 200 and high density capacitors of 400 pF/mm2 with self-resonant frequencies into the GHz regime is developed in this thesis. A multilayer fully printed process is demonstrated using PVP dielectric and dissolving type vias, giving better than 0.1 ohm resistance. In the multilayer process, capacitors and inductors have self-resonant frequencies around 1GHz. These fully printed devices have quality factors less than 10. Finally, 3D inkjet-printed UV-cured material is utilized with a novel silver organo-complex ink at 80oC providing conductivity of 1x107 S/m. A lumped element filter is demonstrated with an insertion loss of only 0.8 dB at 1GHz. The combination of inkjet printing 3D polymer and conductive metal together allows for complex shapes. A fully printed antenna with 81% radiation efficiency is shown. With these promising results and future advances in conductive inks and low-loss dielectrics, the performance of inkjet passives could one day overcome conventional fabrication methods.
|
556 |
Evaluating 3D fit of lithium disilicate restorations with a novel virtual measuring techniqueChien, Edward Chaoho 25 October 2017 (has links)
OBJECTIVE: To explore a novel virtual inspection approach with a 3D metrology software to provide a non-destructive in situ analysis in digital workflow. Also, to evaluate the fit discrepancies of lithium disilicate crowns by using such a novel virtual measuring technique.
MATERIALS AND METHODS: Maxillary arch typodont was used to design abutment for tooth #8 and #14 (hand prepared) and #4 and #10 (titanium custom abutment). All four abutments were placed into a duplicated maxillary arch solid stone model for scanning with laboratory scanner. Four crown patterns were designed and exported as STL files.
The internal control group consists of the four original digital STL files and the external control group which was the 32-milled lithium disilicate crowns (IPS e.max® CAD, Ivoclar Vivadent, Inc.), eight patterns for each tooth. Thirty-two pressable wax patterns (8 of each) was fabricated for each of the three different technique systems. Two printed wax systems, Varseo Wax CAD/Cast (BEGO) and Press-E-Cast (EnvisionTec). Two milled wax systems Harvest Wax (Ivoclar Vivadent, Inc.) and Polycon Cast (Straumann), and a set of conventional cutbacks of 1.5mm with applied marginal wax. All patterns were pressed into lithium disilicate crowns, then fine polished and scanned. Each file was imported into a quality control metrology software (Geomagic Control X, 3D Systems) for marginal fit and internal fit evaluation with respective digital abutment.
RESULTS: Mean of marginal gap for all groups were all lower than the preset gap space of 40 microns. Statistically significant differences in the fit accuracy were found among tooth number, technique system and measurement locations, but the differences are in clinically acceptable range. New scope of analyzing a restoration in a 3D fashion can help solve clinical complications. The study has shown that lower marginal gap does not necessary indicates a better fit restoration, as every level of the crown should be evaluated for.
CONCLUSION: This novel inspection method can be used as a replacement of fit checker and help clinician to work in a full digital workflow. Lithium disilicate restorations fabricated through printed wax pattern, milled wax pattern and conventional hand wax are all clinically acceptable techniques. / 2019-09-26T00:00:00Z
|
557 |
The development of smart reactors for flow chemistry : the role of additive manufacturing and online analysis for automated optimisationHarding, Matthew J. January 2017 (has links)
This thesis investigates the application of online monitoring for the optimisation of flow chemistry, as well as how additive manufacturing can aid the integration of analysis and confer new functionality to flow reactors. The additive manufacturing (AM) processes used were stereolithography (SL) and the metal printing techniques selective laser melting (SLM) and ultrasonic consolidation (UC). Chapter 1 contains a short literature review, intended to give a clear background to the work contained herein. The literature reported gives a brief introduction to flow chemistry and some of the instrumentation used to perform it. Additionally, the evolution of reactor design is investigated leading to an overview of the use of AM for custom reactors. The subsequent use of online analytical technologies and how they relate to the enhancement of flow chemistry is discussed, as well as some of the protocols that have been employed to date to facilitate automated reaction optimisation. Chapter 2 investigates the design and manufacture of flow cells capable of online spectroscopy, as well as the integration of spectroscopic monitoring capability directly into reactors. In addition, the use of AM to produce accessories, not necessarily part of the wetted flow path, was investigated and showed that many useful parts such as fibre optic holders and screws could be produced. The capability of these flow cells was assessed through standard material analysis as well as through the online analysis of flow chemistry. In particular, the use of SL has enabled the production of flow cells with features smaller than 100 microns. This allowed in situ spectroscopy to be performed by embedding fibre optics directly adjacent to the flow channel, offering a new way for reaction monitoring by ultraviolet (UV) spectroscopy to be performed cheaply, and with full user control over the flow cell specification. No additional quartz features were required for these cheap and highly customisable parts. Flow cells of larger path lengths were also produced, and their performance tested, identifying designs and materials suitable for the inline analysis of flow chemistry. These designs were then successfully incorporated directly within the flow channels of larger scale reactors, tailored specifically to commercial flow equipment, for true inline analysis of flow chemistry. Chapter 3 examines the use of metal reactors formed through more expensive printing processes, SLM and UC. As the parts these techniques produce are fully dense, chemically resistant and thermally stable, they were used to perform high temperature chemistry, taking solvents substantially above their boiling points to accelerate reactions and perform them in a fraction of the time of the batch process. UC was also used to produce a reactor with a copper flow path and the possibility of reaction catalysis performed with active metal sections was investigated, revealing that chemical modification of the reactor surface greatly improved the reaction yield. UC was also utilised to produce a flow reactor incorporating a thermocouple in the main body, close to the flow channel to enable accurate reaction temperatures to be measured, a significant improvement over the temperature control offered through the flow instrument. This represents the first use of UC for the production of complicated geometry flow reactors and this work has shown that many more applications of the technique for flow chemistry should be investigated. The ability to perform light mediated coupling reactions in AM produced reactors was also demonstrated successfully for the first time, and further to this that the extended UV curing of SL reactors is crucial for improved robustness of these parts. Chapter 4 centres on the use of online analytical methods to provide rapid, selective, and quantitative online analysis of flow chemistry. This chapter also outlines some of the steps required for automation to be possible, including equipment specifications and the coding approach undertaken to integrate multiple different instruments. A combination of online nuclear magnetic resonance (NMR) spectroscopy analysis and automated experiment selection was then used to optimise a pharmaceutically relevant, photoredox catalysed, C-N coupling reaction between amines and aryl halides, performed under continuous flow conditions for the first time. This optimisation required minimal user input, operating completely unattended, and revealed that lower concentrations of catalyst could be employed than previously identified, reducing the amount of toxic and expensive metal salts required, while achieving high conversion of the starting material. In summary, this thesis has demonstrated that AM, in particular SL, can be used for the production of new high resolution microfluidic flow cells, as well as larger scale flow cell designs which can be integrated into the body of large reactors, not easily performed with other manufacturing methods. SL has also been used to produce reactors capable of performing light catalysed reactions directly, with no further modifications. The use of metal printing AM techniques has allowed in situ catalysis and high temperature, high pressure reactions to be carried out with ease. Finally, the use of online NMR with computer control and experiment automation has allowed the rapid optimisation of a pharmaceutically important C-N coupling reaction.
|
558 |
Um processo para utilizar a tecnologia de impressão 3D na construção de instrumentos didáticos para o ensino de Ciências /Aguiar, Leonardo de Conti Dias. January 2016 (has links)
Orientador: Wilson Massashiro Yonezawa / Banca: Moacir Pereira de Souza Filho / Banca: Andry Feisser Miquelin / Resumo: Esta dissertação trata de uma pesquisa empírica sobre a utilização de tecnologia de impressão 3D na construção de instrumentos didáticos para o Ensino de Ciências. A crescente disponibilidade da tecnologia de impressão 3D abriu oportunidades de explorações em novas áreas, como a educação. Considerando as oportunidades de uso dessa tecnologia para a criação de materiais didáticos, este trabalho mostra com tal tecnologia pode ser utilizada por professores em serviço. Desta forma, um processo prático foi proposto e avaliado por meio de uma oficina. O processo consiste em 6 etapas distintas: identificação das necessidades de ensino por meio da seleção de conteúdos e conceitos científicos; desenvolvimento do plano de construção do instrumento didático desejado; elaboração de rascunhos considerando as dimensões físicas do objeto a ser construído; modelagem 3D do objeto utilizando softwares de desenho ou buscando por modelos prontos; preparação e impressão do modelo 3D na impressora 3D; utilização e avaliação do objeto real gerado. Esse processo foi apresentado e ensinado para alunos de licenciatura construírem instrumentos didáticos em uma oficina. A análise dos dados coletados nessa oficina por meio de observações, entrevistas e questionários mostram que: o processo pode guiar sobre quais são os passos a serem percorridos para construir instrumentos didáticos utilizando impressoras 3D; ocorrem situações estimuladoras ao aprendizado durante as construções; o uso desta tecnologia pode colaborar com o desenvolvimento da isntrumentação para o Ensino de Ciências. Conclui-se que, para se realizar o uso dessa tecnologia, é preciso que o professor desenvolva novas habilidades, como: planejar a construção de objetos levando em conta restrições técnicas das impressoras 3D, aprender a desenhar em softwares de modelagem 3D, preparar a modelo 3D para que a impressora 3D o construa (etapa denominada... / Abstract: This thesis is an empirical research on the use of 3D printing technology in the construction of didactic tools for science teaching. The growing availability of 3D printing technology has opened exploration opportunities in new areas such as education. Considering the opportunities of this technology for the creation of teaching materials, this study shows how such technology can be used in the teacher education and by teachers in service. So, a practical process was proposed and evaluated by its use in a workshop. The process consists in 6 distinct stages: identification of educational needs through the selection of scientific content and concepts; development of the construction plan of the desired teaching tool; preparation of drafts considering the physical dimensions of the object to the object to be built; 3D modeling of the object using drawing software or searching for 3D models created by others; preparation and printing of the 3D model in the 3D printer; use and evaluation of the real object generated. This process was presented and taught for undergraduate students for them build didactic tools during a practical workshop. The analysis of the collected data in this workshop through observations, interviews and questionnaires show that: the process can guide on which are the steps to be taken to build teaching tools using 3D printers; during the constructions occurs situations that stimulate the learning; the use of this technology can contribute to the development of instrumentation for Science Teaching. It was concluded that to do the use of this technology, it is required that the teacher develop new skills, such as planning the construction of objects taking into account technical constraints of 3D printers, learn to draw in 3D modeling software, prepare the 3D model to the 3D printer build it (step called slicing) and use IT resources to share and reuse 3D models of didactic tools created by others. This research... / Mestre
|
559 |
Vascular network formation via 3D printing and cell-based approachesJustin, Alexander William January 2018 (has links)
Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. While many approaches have been reported for forming vascular networks, including materials processing techniques, such those involving lithography, bioprinting, and sacrificial templating; and cell-based approaches, in which cellular self-organization processes form vessels; all are deficient in their ability to form a vessel system of sufficient complexity for supporting a large cellular construct. What is missing from the literature is a method for forming a fully three-dimensional vascular network over the full range of length-scales found in native vessel systems, which can be used alongside cells and perfused with fluids to support their function. A large number of research groups are thus pursuing novel methods for fabricating vascular systems in order that new tissues and organs can be fabricated in the lab. In this project, a 3D printing-based approach was used to form vascular networks which are hierarchical, three-dimensional, and perfusable. This was performed in thick, cellularized hydrogels similar in composition to native tissue; these being collagen (ECM-like) and fibrin (woundlike), both of which are highly capable of supporting cellular activities, such as cell seeding, cell spreading, and capillary morphogenesis. In order to make use of 3D printed network templates in cellularized hydrogel environments, it was necessary to develop a new approach in which standard 3D printed materials were converted into a gelatin template, via an alginate intermediary, which can be removed quickly in physiologic conditions and which does not reduce cell viability. This multi-casting approach enables a hierarchical channel network to be formed in three-dimensions, capable of being perfused with cell medium to maintain the viability of a cell population, thereby addressing the fundamental problem. Using standard cell staining and immuno-histochemistry techniques, we showed good endothelial cell seeding and the presence of tight junctions between the channel endothelial cells. When fibroblasts were seeded into the bulk of the hydrogel, a high degree of cell viability and cell spreading was observed when a threshold flow rate is met. By counting the number of live and dead cells in a sample regions of the gel, we were able to show a dependency of cell viability upon the perfusion flow rate and further determine a regime in which the vast majority of cells are alive and spreading. This data informs future cellular experiments using this platform technology. The limits of existing 3D printing technology meant that the micro-scale vasculature needed to be formed by other means. Cellular co-culture of endothelial and stromal cell types has been shown to be capable of forming capillary-like structures in vitro. For inclusion with the 3D printed channel system, we investigated the use of an angiogenic method for capillary formation, using multi-cellular spheroids, and a vasculogenic approach, using individual cells, in order that the full vascular system could be constructed. Endothelial and mesenchymal stromal cells were encapsulated in small fibrin and collagen gels and maintained under static culture conditions in order to form capillaries by the above approaches. The aim here was to find a particular gel composition and cell concentration which would support capillary morphogenesis while being suitably robust to handle the mechanical stresses associated with perfusion. As future work, the next step will be to incorporate the vasculogenic co-culture technique, used to form capillary-sized vessels, into a perfusable gel containing the large templated channels, formed via the multi-casting approach. The challenge here is to anastomose the capillary-sized vessels to the large templated channels and thereby enable perfusion of the capillary vessels. This step would be a highly significant development in the field as it would mean large constructs could be fabricated with physiological densities of cells, which could lead to a range of potential therapeutic applications.
|
560 |
Utilização de material alternativo para a obtenção e caracterização de biomodelos, por meio da técnica de impressão 3DPRINTER / Using an alternative material for obtaining and to chacaterize biomodels, by the 3DPrinter printing techniqueGrande Neto, Newton Salvador [UNESP] 14 March 2016 (has links)
Submitted by Newton Salvador Grande Neto (newsalgn@hotmail.com) on 2016-04-08T03:13:41Z
No. of bitstreams: 1
Newton Salvador corrigido 30-03.pdf: 4627333 bytes, checksum: 32bbc790f76698649a60a184c85c6860 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-04-08T17:05:27Z (GMT) No. of bitstreams: 1
grandeneto_ns_me_ilha.pdf: 4627333 bytes, checksum: 32bbc790f76698649a60a184c85c6860 (MD5) / Made available in DSpace on 2016-04-08T17:05:27Z (GMT). No. of bitstreams: 1
grandeneto_ns_me_ilha.pdf: 4627333 bytes, checksum: 32bbc790f76698649a60a184c85c6860 (MD5)
Previous issue date: 2016-03-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A técnica de replicar a morfologia de uma estrutura advinda do interior do corpo humano através de um modelo físico é conhecida como biomodelagem. Na área da saúde, um modelo da anatomia humana virtual ou físico é chamado de biomodelo, e este trouxe para a medicina um outro nível em relação a cirurgias modernas, como por exemplo, a possibilidade de o médico cirurgião realizar a simulação de uma cirurgia no biomodelo, analisando as melhores estratégias que serão adotadas para o sucesso da intervenção cirúrgica. Para a confecção de biomodelos são necessárias a execução de três etapas básicas: aquisição de imagens médicas via tomografia computadorizada, tratamento destas imagens utilizando um software específico e a confecção utilizando a manufatura aditiva, caracterizando assim todo o processo de biomodelagem. Todo este processo se tornou possível devido a integração entre as áreas de informática, engenharia, saúde, diagnóstico por imagens e principalmente pelo evento ímpar na área de processos de fabricação, o surgimento da manufatura aditiva. Utilizando um conjunto de tecnologias, a manufatura aditiva é capaz de reproduzir fisicamente, em vários materiais, um modelo virtual camada a camada. Diversas técnicas foram desenvolvidas na área de manufatura aditiva, em especial a impressão tridimensional (3DPrinter) tem seu funcionamento similar a uma impressora comercial a jato de tinta, porém deposita um aglutinante conhecido como binder ao invés de tinta, sobre camadas sucessivas de pó para prototipagem. A reação entre esses dois materiais consolida o formato bidimensional de cada camada, e depois de vários ciclos, um modelo tridimensional está completo. A não utilização de laser para a consolidação das camadas é uma vantagem desta técnica, ou seja, o valor de mercado do maquinário é relativamente mais barato quando comparado a outras técnicas vendidas no mercado. Pesquisas relacionadas a materiais alternativos nacionais são extremamente importantes, pois as descobertas de matérias-primas de baixo custo viabilizam cada vez mais a inclusão da biomodelagem em centros cirúrgicos. Este trabalho teve como objetivo a preparação de um material alternativo economicamente mais viável, utilizando uma proporção em volume de 94% pó de gesso comercial, 5% de ligante e 1% de agente higroscópico. Os resultados demonstram que o material alternativo proposto para este trabalho, se mostrou em torno de 121 vezes mais barato e também atingiu as características necessárias para a construção de biomodelos, como também se mostra tão eficiente em relação a resistência mecânica de manuseio, qualidade superficial e densidade quando comparado a materiais comerciais amplamente aceitos pelo mercado. Com a redução de custos, a técnica de biomodelagem poderá ser utilizada com mais frequência nas intervenções cirúrgicas, diminuindo os riscos existentes na cirurgia através de um planejamento cirúrgico de sucesso. / The technique to replicate a morphology of some interior structure of the human body through a physical model is known as biomodeling. In health care area, a virtual or physical human anatomy model is called biomodel, and this brings to the medicine another level in relation to moderns surgeries, for example, the surgeon has the possibility to perform a simulation of a surgery on a biomodel, making the opportunity to find the best strategies that will be adopted for the success of the surgery intervention. Three basic steps are required to ensure the fabrication of the biomodels: the acquisition of medical images via tomography or MRI, then, the treatment of these images using a specific software, to finally produce the biomodel by additive manufacturing, featuring then the whole process biomodeling. This entire process has become possible because of the integration of information technology, engineering, health, image diagnosis and especially the unique event in the area of manufacturing processes, the emergence of additive manufacturing. By a set of technologies, the additive manufacturing is able to physically reproduce, in several materials, a virtual model layer by layer. Several techniques have been developed in this area, especially the three-dimensional printing (3DPrinter), that operates similarly to a commercial inkjet printer, but, instead of ink, deposits an adhesive known as binder on successive layers of prototyping powder. The reaction between the binder and the powder consolidates the two-dimensional shape of each layer, and, after several cycles, a three-dimensional model is complete. Not utilizing lasers to consolidate the layers is the advantage of this technique that makes the market value of the machinery relatively inexpensive, compared to other market techniques. Researches related to national alternative materials are extremely important, because the Discovery of inexpensive raw materials can enable the inclusion of biomodeling in surgery rooms more and more. The aim of this study is the preparation of an alternative and economically viable material, using a volume proportion of 94% of comercial gypsum powder, 5% of binder and 1% of hygroscopic agent. The results show that the alternative material proposed by this study was about 121 times cheaper and also reached the necessary characteristics for the fabrication of the biomodels, as also shown as efficient regarding to mechanical strength handling, surface quality and density when compared to comercial materials widely accepted by the Market. By reducing the costs, the biomodeling technique can be used more often in surgical interventions, reducing the surgery risks through a success surgical planning.
|
Page generated in 0.0746 seconds