• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparação de métodos de priorização de genes associados a transtornos do neurodesenvolvimento

Feltrin, Arthur Sant'Anna January 2016 (has links)
Orientador: David Corrêa Martins Júnior / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Neurociência e Cognição, 2016. / A biologia sistêmica é um campo de pesquisa interdisciplinar que estuda as complexas interações que ocorrem entre os componentes biológicos de um organismo vivo com o objetivo de entender o seu comportamento, o qual emerge a partir dessas interações. Essas interações compõem uma rede altamente complexa, cujos interagentes podem ser de diversas naturezas. Nesse contexto, as doenças complexas são caracterizadas justamente por serem poligênicas e multifatoriais, ou seja, a gênese e o desenvolvimento dessas doenças são uma consequência da interação conjunta de diversos fatores, incluindo não apenas genes, proteínas e outras moléculas, como também fatores epigenéticos e ambientais. No entanto, diferentes métodos de priorização gênica apresentam resultados (listas de genes) com baixa convergência. Assim, a comparação desses métodos é uma questão crucial. Os objetivos principais da presente dissertação foram a realização de uma extensa revisão da literatura em relação às técnicas de priorização de genes associados a doenças complexas e a comparação de algumas dessas técnicas. Foram selecionadas duas ferramentas: o WGCNA (Weighted Gene Correlation Network Analysis) e o NERI (Network-Medicine Relative Importance), ambos métodos que baseiam-se em teoria de redes complexas e co-expressão para priorização gênica, sendo que o NERI tem o diferencial de modelar as hipóteses da Network Medicine para priorização com base na integração de dados de expressão, de redes de interação proteína-proteína (PPI) e de estudos de associação. Para comparação dos resultados, foram utilizados três bancos de dados de expressão gênica relacionados a esquizofrenia. Como previsto, devido ao diferencial de integração de dados proposto pelo NERI, tal técnica resultou em listas de genes com replicação superior à obtida pelo WGCNA para os três bancos de dados em questão. Além disso a interseção entre as listas de genes priorizados de cada metodologia foi baixa, com poucos genes sendo compartilhados pelos resultados dos dois métodos. Ambas metodologias selecionaram genes com relevância biológica relacionada a esquizofrenia, incluindo grupos de genes relacionados a atividade do sistema imune (infecções, estresse), atividade do Sistema Nervoso Central (atividade sináptica, crescimento axonal) e também de embriogênese. Baseando-se nesses resultados, conclui-se que a análise de redes e a integração de dados biológicos são fundamentais para uma ferramenta apresentar resultados promissores, sobretudo no âmbito da descoberta de novos genes e suas redes de interação biológica que seriam possivelmente desconhecidas se fosse realizada apenas a análise individual de cada tipo de dado biológico disponível. / Systems Biology is an interdisciplinary research field which studies the complex interactions that occur between biological compounds of a living organism in order to understand their behavior, which emerges from these interactions. Such interactions compose a highly complex network, whose elements can be of several types. In this context, complex diseases are characterized precisely by being of polygenic and multifactorial nature, i.e., the genesis and development of these diseases are a result of the joint interaction of several factors, including not only genes, proteins and other molecules, but also epigenetic and environmental factors. However, many methods for gene prioritization present results (list of genes) with small convergence. Thus, the comparison involving those methods is a crucial issue. The main objectives of this master thesis was to perform an extensive literature review related to gene prioritization techniques associated to complex diseases and the comparison of part of these techniques. Two techniques were selected: WGCNA (Weighted Gene Correlation Network Analysis) and NERI (Network-Medicine Relative Importance), both methods based on complex networks theory and co-expression for gene prioritization, but NERI having the differential of modeling the Network Medicine hypotheses for prioritization based on integration of expression, protein-protein interaction (PPI) network and association studies. For comparison of the results, three gene expression databases related to schizophrenia were adopted. As predicted, due to the data integration proposed by NERI, such technique resulted in genes lists with superior replication for the three databases mentioned. Additionally, the intersection between the results of the genes lists prioritized by the two methodologies was small, with few genes being found in both lists. Both methods selected biologically relevant to schizophrenia, including groups of genes related to imune system activity (infections, stress), Central Nervous System activity (synaptic activity, axonal growth) and embryogenesis. From these results, it follows that network analysis and biological data integration are fundamental for a gene prioritization method to present promising results, mainly for discovery of new genes and their biological interaction networks that would possibly be unknown if only an individual analysis of each biological data available were performed.
2

Uma abordagem de integração de dados de redes PPI e expressão gênica para priorizar genes relacionados a doenças complexas / An integrative approach combining PPI networks and gene expression to prioritize genes related to complex diseases

Simões, Sérgio Nery 30 June 2015 (has links)
Doenças complexas são caracterizadas por serem poligênicas e multifatoriais, o que representa um desafio em relação à busca de genes relacionados a elas. Com o advento das tecnologias de sequenciamento em larga escala do genoma e das medições de expressão gênica (transcritoma), bem como o conhecimento de interações proteína-proteína, doenças complexas têm sido sistematicamente investigadas. Particularmente, baseando-se no paradigma Network Medicine, as redes de interação proteína-proteína (PPI -- Protein-Protein Interaction) têm sido utilizadas para priorizar genes relacionados às doenças complexas segundo suas características topológicas. Entretanto, as redes PPI são afetadas pelo viés da literatura, em que as proteínas mais estudadas tendem a ter mais conexões, degradando a qualidade dos resultados. Adicionalmente, métodos que utilizam somente redes PPI fornecem apenas resultados estáticos e não-específicos, uma vez que as topologias destas redes não são específicas de uma determinada doença. Neste trabalho, desenvolvemos uma metodologia para priorizar genes e vias biológicas relacionados à uma dada doença complexa, através de uma abordagem integrativa de dados de redes PPI, transcritômica e genômica, visando aumentar a replicabilidade dos diferentes estudos e a descoberta de novos genes associados à doença. Após a integração das redes PPI com dados de expressão gênica, aplicamos as hipóteses da Network Medicine à rede resultante para conectar genes sementes (relacionados à doença, definidos a partir de estudos de associação) através de caminhos mínimos que possuam maior co-expressão entre seus genes. Dados de expressão em duas condições (controle e doença) são usados separadamente para obter duas redes, em que cada nó (gene) dessas redes é pontuado segundo fatores topológicos e de co-expressão. Baseado nesta pontuação, desenvolvemos dois escores de ranqueamento: um que prioriza genes com maior alteração entre suas pontuações em cada condição, e outro que privilegia genes com a maior soma destas pontuações. A aplicação do método a três estudos envolvendo dados de expressão de esquizofrenia recuperou com sucesso genes diferencialmente co-expressos em duas condições, e ao mesmo tempo evitou o viés da literatura. Além disso, houve uma melhoria substancial na replicação dos resultados pelo método aplicado aos três estudos, que por métodos convencionais não alcançavam replicabilidade satisfatória. / Complex diseases are characterized as being poligenic and multifactorial, so this poses a challenge regarding the search for genes related to them. With the advent of high-throughput technologies for genome sequencing and gene expression measurements (transcriptome), as well as the knowledge of protein-protein interactions, complex diseases have been sistematically investigated. Particularly, Protein-Protein Interaction (PPI) networks have been used to prioritize genes related to complex diseases according to its topological features. However, PPI networks are affected by ascertainment bias, in which the most studied proteins tend to have more connections, degrading the quality of the results. Additionally, methods using only PPI networks can provide just static and non-specific results, since the topologies of these networks are not specific of a given disease. In this work, we developed a methodology to prioritize genes and biological pathways related to a given complex disease, through an approach that integrates data from PPI networks, transcriptomics and genomics, aiming to increase replicability of different studies and to discover new genes associated to the disease. The methodology integrates PPI network and gene expression data, and then applies the Network Medicine Hypotheses to the resulting network in order to connect seed genes (obtained from association studies) through shortest paths possessing larger coexpression among their genes. Gene expression data in two conditions (control and disease) are used to obtain two networks, where each node (gene) in these networks is rated according to topological and coexpression aspects. Based on this rating, we developed two ranking scores: one that prioritizes genes with the largest alteration between their ratings in each condition, and another that favors genes with the greatest sum of these scores. The application of this method to three studies involving schizophrenia expression data successfully recovered differentially co-expressed gene in two conditions, while avoiding the ascertainment bias. Furthermore, when applied to the three studies, the method achieved a substantial improvement in replication of results, while other conventional methods did not reach a satisfactory replicability.
3

Análise metadimensional em inferência de redes gênicas e priorização

Marchi, Carlos Eduardo January 2017 (has links)
Orientador: Prof. Dr. David Corrêa Martins Júnior / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Ciência da Computação, 2017.
4

Uma abordagem de integração de dados de redes PPI e expressão gênica para priorizar genes relacionados a doenças complexas / An integrative approach combining PPI networks and gene expression to prioritize genes related to complex diseases

Sérgio Nery Simões 30 June 2015 (has links)
Doenças complexas são caracterizadas por serem poligênicas e multifatoriais, o que representa um desafio em relação à busca de genes relacionados a elas. Com o advento das tecnologias de sequenciamento em larga escala do genoma e das medições de expressão gênica (transcritoma), bem como o conhecimento de interações proteína-proteína, doenças complexas têm sido sistematicamente investigadas. Particularmente, baseando-se no paradigma Network Medicine, as redes de interação proteína-proteína (PPI -- Protein-Protein Interaction) têm sido utilizadas para priorizar genes relacionados às doenças complexas segundo suas características topológicas. Entretanto, as redes PPI são afetadas pelo viés da literatura, em que as proteínas mais estudadas tendem a ter mais conexões, degradando a qualidade dos resultados. Adicionalmente, métodos que utilizam somente redes PPI fornecem apenas resultados estáticos e não-específicos, uma vez que as topologias destas redes não são específicas de uma determinada doença. Neste trabalho, desenvolvemos uma metodologia para priorizar genes e vias biológicas relacionados à uma dada doença complexa, através de uma abordagem integrativa de dados de redes PPI, transcritômica e genômica, visando aumentar a replicabilidade dos diferentes estudos e a descoberta de novos genes associados à doença. Após a integração das redes PPI com dados de expressão gênica, aplicamos as hipóteses da Network Medicine à rede resultante para conectar genes sementes (relacionados à doença, definidos a partir de estudos de associação) através de caminhos mínimos que possuam maior co-expressão entre seus genes. Dados de expressão em duas condições (controle e doença) são usados separadamente para obter duas redes, em que cada nó (gene) dessas redes é pontuado segundo fatores topológicos e de co-expressão. Baseado nesta pontuação, desenvolvemos dois escores de ranqueamento: um que prioriza genes com maior alteração entre suas pontuações em cada condição, e outro que privilegia genes com a maior soma destas pontuações. A aplicação do método a três estudos envolvendo dados de expressão de esquizofrenia recuperou com sucesso genes diferencialmente co-expressos em duas condições, e ao mesmo tempo evitou o viés da literatura. Além disso, houve uma melhoria substancial na replicação dos resultados pelo método aplicado aos três estudos, que por métodos convencionais não alcançavam replicabilidade satisfatória. / Complex diseases are characterized as being poligenic and multifactorial, so this poses a challenge regarding the search for genes related to them. With the advent of high-throughput technologies for genome sequencing and gene expression measurements (transcriptome), as well as the knowledge of protein-protein interactions, complex diseases have been sistematically investigated. Particularly, Protein-Protein Interaction (PPI) networks have been used to prioritize genes related to complex diseases according to its topological features. However, PPI networks are affected by ascertainment bias, in which the most studied proteins tend to have more connections, degrading the quality of the results. Additionally, methods using only PPI networks can provide just static and non-specific results, since the topologies of these networks are not specific of a given disease. In this work, we developed a methodology to prioritize genes and biological pathways related to a given complex disease, through an approach that integrates data from PPI networks, transcriptomics and genomics, aiming to increase replicability of different studies and to discover new genes associated to the disease. The methodology integrates PPI network and gene expression data, and then applies the Network Medicine Hypotheses to the resulting network in order to connect seed genes (obtained from association studies) through shortest paths possessing larger coexpression among their genes. Gene expression data in two conditions (control and disease) are used to obtain two networks, where each node (gene) in these networks is rated according to topological and coexpression aspects. Based on this rating, we developed two ranking scores: one that prioritizes genes with the largest alteration between their ratings in each condition, and another that favors genes with the greatest sum of these scores. The application of this method to three studies involving schizophrenia expression data successfully recovered differentially co-expressed gene in two conditions, while avoiding the ascertainment bias. Furthermore, when applied to the three studies, the method achieved a substantial improvement in replication of results, while other conventional methods did not reach a satisfactory replicability.

Page generated in 0.0505 seconds