• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

City decision-making : optimization of the location and design of urban green spaces

Leboeuf, Caroline 04 1900 (has links)
Le besoin grandissant pour une planification urbaine plus durable et pour des interventions publiques visant à l'amélioration du bien-être collectif, ont grandement contribué à un engouement pour les espaces verts. Les parcs sont reconnus pour leur impact positif en zone urbaine dense, et nous sommes intéressés par l'application des concepts théoriques du domaine de la recherche opérationnelle pour assister les décideurs publics afin d'améliorer l'accessibilité, la distribution et la conception des parcs. Étant donné le contexte, nous sommes particulièrement motivés par le concept d'équité, et étudions le comportement des usagers des parcs à l'aide d'un modèle d'interaction spatiale, tel qu'appliqué dans les problèmes d'emplacement d'installations dans un marché compétitif. Dans cette recherche, nous présentons un modèle d'emplacement d'installations à deux étapes pouvant être adapté pour assister les décideurs publics à l'échelle de la ville. Nous étudions spécifiquement l'application aux espaces verts urbains, mais soulignons que des extensions du modèle peuvent permettre d'aborder d'autres problèmes d'emplacements d'installations sujets à des enjeux d'équité. La première étape de notre problème d'optimisation a pour but d'évaluer l'allocation la plus équitable du budget de la ville aux arrondissements, basé sur une somme du budget pondérée par des facteurs d'équité. Dans la deuxième étape du modèle, nous cherchons l'emplacement et la conception optimale des parcs, et l'objectif consiste à maximiser la probabilité totale que les individus visitent les parcs. Étant donné la non-linéarité de la fonction objective, nous appliquons une méthode de linéarisation et obtenons un modèle de programmation linéaire mixte en nombres entiers, pouvant être résolu avec des solveurs standards. Nous introduisons aussi une méthode de regroupement pour réduire la taille du problème, et ainsi trouver des solutions quasi optimales dans un délai raisonnable. Le modèle est testé à l'aide de l'étude de cas de la ville de Montréal, Canada, et nous présentons une analyse comparative des résultats afin de justifier la performance de notre modèle. / The recent promotion of sustainable urban planning combined with a growing need for public interventions to improve well-being and health in dense urban areas have led to an increased collective interest for green spaces. Parks have proven a wide range of benefits in urban areas, and we are interested in the application of theoretical concepts from the field of Operations Research to assist decision-makers to improve parks' accessibility, distribution and design. Given the context of public decision-making, we are particularly concerned with the concept of fairness, and are focused on an advanced assessment of users' behavior using a spatial interaction model (SIM) as in competitive facility locations' frameworks. In this research, we present a two-stage fair facility location and design (2SFFLD) model, which serves as a template model to assist public decision-makers at the city-level for the urban green spaces (UGSs) planning. We study the application of the 2SFFLD model to UGSs, but emphasize the potential extension to other applications to location problems concerned with fairness and equity. The first-stage of the optimization problem is about the optimal budget allocation based on a total fair-weighted budget formula. The second-stage seeks the optimal location and design of parks, and the objective consists of maximizing the total expected probability of individuals visiting parks. Given the non-linearity of the objective function, we apply a ``Method-based Linearization'' and obtain a mixed-integer linear program that can be solved with standard solvers. We further introduce a clustering method to reduce the size of the problem and determine a close to optimal solution within reasonable time constraints. The model is tested using the case study of the city of Montreal, Canada, and comparative results are discussed in detail to justify the performance of the model.

Page generated in 0.0925 seconds