Spelling suggestions: "subject:"problèmes d'loptimisation polynomiale"" "subject:"problèmes d'loptimisation polynomiales""
1 |
Preuves formelles pour l'optimisation globale -- Méthodes de gabarits et sommes de carrésMagron, Victor 09 December 2013 (has links) (PDF)
Cette thèse a pour but de certifier des bornes inférieures de fonctions multivariées à valeurs réelles, définies par des expressions semi-algébriques ou transcendantes et de prouver leur validité en vérifiant les certificats dans l'assistant de preuves Coq. De nombreuses inégalités de cette nature apparaissent par exemple dans la preuve par Thomas Hales de la conjecture de Kepler. Dans le cadre de cette étude, on s'intéresse à des fonctions non-linéaires, faisant intervenir des opérations semi-algébriques ainsi que des fonctions transcendantes univariées (cos, arctan, exp, etc). L'utilisation de différentes méthodes d'approximation permet de relâcher le problème initial en un problème d'optimisation semi-algébrique. On se ramène ainsi à des problèmes d'optimisation polynomiale, qu'on résout par des techniques de sommes de carrés creuses. Dans un premier temps, nous présentons une technique classique d'optimisation globale. Les fonctions transcendantes univariées sont approchées par les meilleurs estimateurs polynomiaux uniformes de degré d. Par la suite, nous présentons une méthode alternative, qui consiste a borner certains des constituants de la fonction non-linéaire par des suprema de formes quadratiques (approximation maxplus, introduite à l'origine en contrôle optimal) de courbures judicieusement choisies. Enfin, cet algorithme d'approximation est amélioré, en combinant l'idée des estimateurs maxplus et de la méthode des gabarits développée par Manna et al. (en analyse statique). Les gabarits non-linéaires permettent un compromis sur la precision des approximations maxplus afin de contrôler la complexité des estimateurs semi-algébriques. Ainsi, on obtient une nouvelle technique d'optimisation globale, basée sur les gabarits, qui exploite à la fois la precision des sommes de carrés et la capacité de passage à l'échelle des méthodes d'abstraction. L'implémentation de ces méthodes d'approximation a abouti à un outil logiciel : NLCertify. Cet outil génère des certificats à partir d'approximations semi-algébriques et de sommes de carrés. Son interface avec Coq permet de bénéficier de l'arithmétique certifiée disponible dans l'assistant de preuves, et ainsi d'obtenir des estimateurs et des bornes valides pour chaque approximation. Nous démontrons les performances de cet outil de certification sur divers problèmes d'optimisation globale ainsi que sur des inégalités serrées qui interviennent dans la preuve de Hales.
|
Page generated in 0.1258 seconds