• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monotonicidade Maximal de Operadores e Bifunções para Problemas de Equilíbrio

Pereira, Edfram Rodrigues, (92) 992456564 14 May 2018 (has links)
Submitted by Albertina Ferreira (albertina2010@gmail.com) on 2018-06-08T20:44:58Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Edfram Dissertação.pdf: 1295907 bytes, checksum: b3463ed770e59d2c53a2d96f9b0010d2 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-06-11T13:09:20Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Edfram Dissertação.pdf: 1295907 bytes, checksum: b3463ed770e59d2c53a2d96f9b0010d2 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-06-11T13:14:10Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Edfram Dissertação.pdf: 1295907 bytes, checksum: b3463ed770e59d2c53a2d96f9b0010d2 (MD5) / Made available in DSpace on 2018-06-11T13:14:11Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Edfram Dissertação.pdf: 1295907 bytes, checksum: b3463ed770e59d2c53a2d96f9b0010d2 (MD5) Previous issue date: 2018-05-14 / In this dissertation, we define normed, metric and topological space and we study some properties of these. Using the compact set definition, we demonstrate the Ky Fan Lemma that ensures that the intersection of a family of closed sets is not empty. We use this Lemma to obtain a result of existence for an equilibrium problem. Next, we present the main characteristics of reflective, smooth and strictly convex space, and relate them to their respective duals via an operator, called the duality application. Weak and star-weak topologies were defined and used in order to obtain closed ball compactness and other convenient results. Moreover, starting from a monotonous maximal bifunction we obtain for a problem of equilibrium a result of existence, in topological spaces, and results of existence and uniqueness, in reflexive real Banach space. The uniqueness result was used to define resolvent of the maximal monotonic bifunction. Given a maximal monotonic bifunction, we define a maximal monotonic operator which has the same resolvent of the bifunction and reciprocally. In addition, we have seen that solving an equilibrium problem associated with bifunction is equivalent to finding zero of the defined operator from the bifunction and reciprocally. Finally, we study the relationship between the class of these monotonic maximal bifunctions and the class of their respective monotonous maximal operators.] / Nesta dissertação, definimos espaço normado, métrico e topológico e estudamos algumas propriedades destes. Utilizando a definição de conjunto compacto, demonstramos o Lema Ky Fan que garante que a interseção de uma família de conjuntos fechados é não vazia. Usamos este Lema para obter um resultado de existência para um problema de equilíbrio. Em seguida, apresentamos as principais características de espaço reflexivo, suave e estritamente convexo e os relacionamos com seus respectivos duais via um operador, denominado aplicação de dualidade. As topologias fraca e fraca-estrela foram definidas e utilizadas com o intuito de obter compacidade de bolas fechadas e outros resultados convenientes. Além disso, partindo de uma bifunção monótona maximal obtemos para um problema de equilíbrio um resultado de existência, em espaços topológicos, e resultados de existência e unicidade, em espaço de Banach real reflexivo. O resultado de unicidade foi utilizado para definir resolvente de bifunção monótona maximal. Dada uma bifunção monótona maximal, definimos um operador monótono maximal o qual tem o mesmo resolvente da bifunção e vice-versa. Além disso, vimos que resolver um problema de equilíbrio associado à bifunção é equivalente a encontrar zero do operador definido a partir da bifunção e reciprocamente. Por fim, estudamos a relação entre a classe dessas bifunções monótonas maximais e a classe de seus respectivos operadores monótonos maximais associados.
2

O método de Galerkin descontínuo aplicado na investigação de um problema de elasticidade anisotrópica / The discontinuous Galerkin method applied to the investigation of an anisotropic elasticity problem

Sampaio, Maria do Socorro Martins 08 July 2009 (has links)
Estuda-se o problema de equilíbrio sem força de corpo de uma esfera anisotrópica sob compressão radial uniformemente distribuída sobre o seu contorno no contexto da teoria da elasticidade linear clássica. A solução deste problema prediz o fenômeno inaceitável da auto-intersecção em uma região próxima ao centro da esfera para uma dada faixa de parâmetros materiais. Sob o contexto de uma teoria de minimização do funcional de energia potencial total da elasticidade linear clássica com a restrição de que o determinante do gradiente da função mudança de configuração seja injetivo, este fenômeno é eliminado. Aplicam-se duas formulações do Método dos Elementos Finitos de Galerkin Descontínuo (MEFGD) para obter soluções aproximadas para o problema de equilíbrio da esfera sem restrição. A primeira formulação do MEFGD aproxima diretamente os campos de deslocamento e deformação infinitesimal. A consideração do campo adicional de deformação na formulação do MEFGD aumenta o número de graus de liberdade associados aos nós da malha de elementos finitos e, consequentemente, o custo computacional. Com o objetivo de reduzir o número de graus de liberdade, introduz-se neste trabalho uma formulação alternativa do MEFGD. Nesta formulação, o campo de deformação infinitesimal não é obtido diretamente da inversão do sistema de equações resultante, mas sim por pós-processamento, a partir do campo de deslocamento aproximado. As soluções aproximadas obtidas com ambas as formulações do MEFGD são comparadas com a solução exata do problema sem restrição e com soluções aproximadas obtidas com o Método dos Elementos Finitos de Galerkin Clássico (MEFGC). Ambas as formulações do MEFGD fornecem melhores aproximações para a solução exata do que as aproximações obtidas com o MEFGC. Os erros entre a solução exata e as soluções aproximadas obtidas com a formulação alternativa do MEFGD são um pouco maiores do que os erros correspondentes obtidos com a formulação original do MEFGD. Este aumento nos erros é compensado pelo menor esforço computacional exigido pela formulação alternativa. Este trabalho serve de base para o estudo de problemas com restrição de injetividade utilizando o método de Galerkin descontínuo. / The equilibrium problem without body force of an anisotropic sphere under radial compression that is uniformly distributed on the sphere\'s boundary is investigated in the context of the classical linear elasticity theory. The solution of this problem predicts the unacceptable phenomenon of self-intersection in a vicinity of the center of the sphere for a given range of material parameters. This phenomenon can be eliminated in the context of a theory that minimizes the total potential energy of classical linear elasticity subjected to the restriction that the deformation field be injective. Two formulations of the Finite Element Method using Discontinuous Galerkin (MEFGD) are used to obtain approximate solutions for the unconstrained problem. The first formulation of the MEFGD approximates both the displacement and the strain fields. The consideration of the strain as an additional field in the formulation of the MEFGD increases the number of degrees of freedom associated to the finite elements and, therefore, the computational cost. With the objective of reducing the number of degrees of freedom, an alternative formulation of the MEFGD is introduced in this work. In this formulation, the strain field is not obtained directly from the inversion of the resulting linear system of equations, but from a post-processing calculation using the approximate displacement field. The approximate solutions obtained with both formulations of the MEFGD are compared with the exact solution of the problem without restriction and with approximate solutions obtained with the Finite Element Method using Classical Galerkin (MEFGC). Both formulations of the MEFGD yield better approximations for the exact solution than the approximations obtained with the MEFGC. The errors between the exact solution and the approximate solutions obtained with the alternative formulation of the MEFGD are slightly higher than the corresponding errors obtained with the original formulation of the MEFGD. These errors are compensated by the fact that the alternative formulation requires less computational effort than the computational effort required by the original formulation. This work serves as a basis for the study of problems with the injectivity restriction using the discontinuous Galerkin method.
3

Método de ponto proximal para problemas de equilíbrio em espaços de Hilbert

Viana, Daiana dos Santos 23 September 2013 (has links)
Made available in DSpace on 2015-04-22T22:16:06Z (GMT). No. of bitstreams: 1 daiana santos.pdf: 1011976 bytes, checksum: 0d1f23d4c01774fbad224c1c0fbe0359 (MD5) Previous issue date: 2013-09-23 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / In this dissertation, we present a proximal point method for solving problems balance in Hilbert spaces proposed by Alfredo Iusem and Wilfredo Sosa in [1]. We analyzed the convergence of this mehtod for troubleshooting balance. We verified the sequence generated by the method of classical proximal point and generated sequence the proximal point method to balance problems are the same. These results were obtained using variations of monotonicity of the function that defines the balance problem. In the final analysis is made on the weakening of the hypothesis assumed by function. / Nesta dissertação, apresentamos um método de ponto proximal para resolução de problemas de equilíbrio em espaços de Hilbert proposto por Alfredo Iusem e Wilfredo Sosa em [1]. Analisamos a convergência deste método para soluções de problemas de equilíbrio. Verificamos que a sequência gerada pelo método de ponto proximal clássico e a sequência gerada pelo método de ponto proximal para problemas de equilíbrio coincidem. Esses resultados foram obtidos usando variações de monotonicidade sobre a função que define o problema de equilíbrio. Uma análise final é feita sobre o enfraquecimento das hipóteses assumidas pela função.
4

O método de Galerkin descontínuo aplicado na investigação de um problema de elasticidade anisotrópica / The discontinuous Galerkin method applied to the investigation of an anisotropic elasticity problem

Maria do Socorro Martins Sampaio 08 July 2009 (has links)
Estuda-se o problema de equilíbrio sem força de corpo de uma esfera anisotrópica sob compressão radial uniformemente distribuída sobre o seu contorno no contexto da teoria da elasticidade linear clássica. A solução deste problema prediz o fenômeno inaceitável da auto-intersecção em uma região próxima ao centro da esfera para uma dada faixa de parâmetros materiais. Sob o contexto de uma teoria de minimização do funcional de energia potencial total da elasticidade linear clássica com a restrição de que o determinante do gradiente da função mudança de configuração seja injetivo, este fenômeno é eliminado. Aplicam-se duas formulações do Método dos Elementos Finitos de Galerkin Descontínuo (MEFGD) para obter soluções aproximadas para o problema de equilíbrio da esfera sem restrição. A primeira formulação do MEFGD aproxima diretamente os campos de deslocamento e deformação infinitesimal. A consideração do campo adicional de deformação na formulação do MEFGD aumenta o número de graus de liberdade associados aos nós da malha de elementos finitos e, consequentemente, o custo computacional. Com o objetivo de reduzir o número de graus de liberdade, introduz-se neste trabalho uma formulação alternativa do MEFGD. Nesta formulação, o campo de deformação infinitesimal não é obtido diretamente da inversão do sistema de equações resultante, mas sim por pós-processamento, a partir do campo de deslocamento aproximado. As soluções aproximadas obtidas com ambas as formulações do MEFGD são comparadas com a solução exata do problema sem restrição e com soluções aproximadas obtidas com o Método dos Elementos Finitos de Galerkin Clássico (MEFGC). Ambas as formulações do MEFGD fornecem melhores aproximações para a solução exata do que as aproximações obtidas com o MEFGC. Os erros entre a solução exata e as soluções aproximadas obtidas com a formulação alternativa do MEFGD são um pouco maiores do que os erros correspondentes obtidos com a formulação original do MEFGD. Este aumento nos erros é compensado pelo menor esforço computacional exigido pela formulação alternativa. Este trabalho serve de base para o estudo de problemas com restrição de injetividade utilizando o método de Galerkin descontínuo. / The equilibrium problem without body force of an anisotropic sphere under radial compression that is uniformly distributed on the sphere\'s boundary is investigated in the context of the classical linear elasticity theory. The solution of this problem predicts the unacceptable phenomenon of self-intersection in a vicinity of the center of the sphere for a given range of material parameters. This phenomenon can be eliminated in the context of a theory that minimizes the total potential energy of classical linear elasticity subjected to the restriction that the deformation field be injective. Two formulations of the Finite Element Method using Discontinuous Galerkin (MEFGD) are used to obtain approximate solutions for the unconstrained problem. The first formulation of the MEFGD approximates both the displacement and the strain fields. The consideration of the strain as an additional field in the formulation of the MEFGD increases the number of degrees of freedom associated to the finite elements and, therefore, the computational cost. With the objective of reducing the number of degrees of freedom, an alternative formulation of the MEFGD is introduced in this work. In this formulation, the strain field is not obtained directly from the inversion of the resulting linear system of equations, but from a post-processing calculation using the approximate displacement field. The approximate solutions obtained with both formulations of the MEFGD are compared with the exact solution of the problem without restriction and with approximate solutions obtained with the Finite Element Method using Classical Galerkin (MEFGC). Both formulations of the MEFGD yield better approximations for the exact solution than the approximations obtained with the MEFGC. The errors between the exact solution and the approximate solutions obtained with the alternative formulation of the MEFGD are slightly higher than the corresponding errors obtained with the original formulation of the MEFGD. These errors are compensated by the fact that the alternative formulation requires less computational effort than the computational effort required by the original formulation. This work serves as a basis for the study of problems with the injectivity restriction using the discontinuous Galerkin method.
5

Generalized vector equilibrium problems and algorithms for variational inequality in hadamard manifolds / Problemas de equilíbrio vetoriais generalizados e algoritmos para desigualdades variacionais em variedades de hadamard

Batista, Edvaldo Elias de Almeida 20 October 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:10:49Z No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:11:03Z (GMT) No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-12-09T17:11:03Z (GMT). No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-10-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, we study variational inequalities and generalized vector equilibrium problems. In Chapter 1, several results and basic definitions of Riemannian geometry are listed; we present the concept of the monotone vector field in Hadamard manifolds and many of their properties, besides, we introduce the concept of enlargement of a monotone vector field, and we display its properties in a Riemannian context. In Chapter 2, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced, and its convergence properties are studied; see [7]. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained. In Chapter 3, we present an extragradient algorithm for variational inequality associated with the point-to-set vector field in Hadamard manifolds and study its convergence properties; see [8]. In order to present our method, the concept of enlargement of maximal monotone vector fields is used and its lower-semicontinuity is established to obtain the convergence of the method in this new context. In Chapter 4, we present a sufficient condition for the existence of a solution to the generalized vector equilibrium problem on Hadamard manifolds using a version of the KnasterKuratowski-Mazurkiewicz Lemma; see [6]. In particular, the existence of solutions to optimization, vector optimization, Nash equilibria, complementarity, and variational inequality is a special case of the existence result for the generalized vector equilibrium problem. / Nesta tese, estudamos desigualdades variacionais e o problema de equilíbrio vetorial generalizado. No Capítulo 1, vários resultados e definições elementares sobre geometria Riemanniana são enunciados; apresentamos o conceito de campo vetorial monótono e muitas de suas propriedades, além de introduzir o conceito de alargamento de um campo vetorial monótono e exibir suas propriedades em um contexto Riemanniano. No Capítulo 2, um método de ponto proximal inexato para desigualdades variacionais em variedades de Hadamard é introduzido e suas propriedades de convergência são estudadas; veja [7]. Para apresentar o nosso método, generalizamos o conceito de alargamento de operadores monótonos, do contexto linear ao contexto de Riemanniano. Como aplicação, é obtido um método de ponto proximal inexato para problemas de otimização com restrições. No Capítulo 3, apresentamos um algoritmo extragradiente para desigualdades variacionais associado a um campo vetorial ponto-conjunto em variedades de Hadamard e estudamos suas propriedades de convergência; veja [8]. A fim de apresentar nosso método, o conceito de alargamento de campos vetoriais monótonos é utilizado e sua semicontinuidade inferior é estabelecida, a fim de obter a convergência do método neste novo contexto. No Capítulo 4, apresentamos uma condição suficiente para a existência de soluções para o problema de equilíbrio vetorial generalizado em variedades de Hadamard usando uma versão do Lema Knaster-Kuratowski-Mazurkiewicz; veja [6]. Em particular, a existência de soluções para problemas de otimização, otimização vetorial, equilíbrio de Nash, complementaridade e desigualdades variacionais são casos especiais do resultado de existência do problema de equilíbrio vetorial generalizado.

Page generated in 0.0662 seconds