Spelling suggestions: "subject:"problema dde pure"" "subject:"problema dde cure""
1 |
Estimativa do conjunto atrator e da área de atração para o problema de Lure estendido utilizando LMI / An estimate of attractor set and its associated attraction area of the extended Lure problem using LMIMartins, André Christóvão Pio 23 March 2005 (has links)
A análise de estabilidade de sistemas não-lineares surge em vários campos da engenharia. Geralmente, esta análise consiste na determinação de conjuntos atratores estáveis e suas respectivas áreas de atração. Os métodos baseados no método de Lyapunov fornecem estimativas destes conjuntos. Entretanto, estes métodos envolvem uma busca não sistemática por funções auxiliares chamadas funções de Lyapunov. Este trabalho apresenta um procedimento sistemático, baseado no método de Lyapunov, para estimar conjuntos atratores e as respectivas áreas de atração para uma classe de sistemas não-lineares, aqui chamado de problema de Lure estendido. Este problema consiste de sistemas não-lineares que podem ser escritos na forma do problema de Lure, cuja função não-linear pode violar a condição de setor em torno da origem. O procedimento desenvolvido é baseado na extensão do princípio de invariância de LaSalle e usa as funções de Lyapunov genéricas do problema de Lure para estimar o conjunto atrator e sua respectiva área de atração. Os parâmetros das funções de Lyapunov são obtidos resolvendo um problema de otimização que pode ser colocado na forma de desigualdades matriciais lineares (LMIs). / The stability analysis of nonlinear systems is present in several engineering fields. Usually, the concern is the determination of stable attractor sets and their associated attraction areas. Methods based on the Lyapunov method provide estimates of these sets. However, these methods involve a nonsystematic search for auxiliary functions called Lyapunov functions. This work presents a systematic procedure, based on Lyapunov method, to estimate attractor sets and their associated attraction areas of a class of nonlinear systems, called in this work extended Lure problem. The extended Lure problem consists of nonlinear systems like those of Lure problem where the nonlinear functions can violate the sector conditions around the origin. The developed procedure is based on the extension of invariance LaSalle principle and uses the general Lyapunov functions of Lure problem to estimate the attractor set and their associated attraction area. The parameters of the Lyapunov functions are obtained solving an optimization problem write like a linear matrix inequality (LMI).
|
2 |
Estimativa do conjunto atrator e da área de atração para o problema de Lure estendido utilizando LMI / An estimate of attractor set and its associated attraction area of the extended Lure problem using LMIAndré Christóvão Pio Martins 23 March 2005 (has links)
A análise de estabilidade de sistemas não-lineares surge em vários campos da engenharia. Geralmente, esta análise consiste na determinação de conjuntos atratores estáveis e suas respectivas áreas de atração. Os métodos baseados no método de Lyapunov fornecem estimativas destes conjuntos. Entretanto, estes métodos envolvem uma busca não sistemática por funções auxiliares chamadas funções de Lyapunov. Este trabalho apresenta um procedimento sistemático, baseado no método de Lyapunov, para estimar conjuntos atratores e as respectivas áreas de atração para uma classe de sistemas não-lineares, aqui chamado de problema de Lure estendido. Este problema consiste de sistemas não-lineares que podem ser escritos na forma do problema de Lure, cuja função não-linear pode violar a condição de setor em torno da origem. O procedimento desenvolvido é baseado na extensão do princípio de invariância de LaSalle e usa as funções de Lyapunov genéricas do problema de Lure para estimar o conjunto atrator e sua respectiva área de atração. Os parâmetros das funções de Lyapunov são obtidos resolvendo um problema de otimização que pode ser colocado na forma de desigualdades matriciais lineares (LMIs). / The stability analysis of nonlinear systems is present in several engineering fields. Usually, the concern is the determination of stable attractor sets and their associated attraction areas. Methods based on the Lyapunov method provide estimates of these sets. However, these methods involve a nonsystematic search for auxiliary functions called Lyapunov functions. This work presents a systematic procedure, based on Lyapunov method, to estimate attractor sets and their associated attraction areas of a class of nonlinear systems, called in this work extended Lure problem. The extended Lure problem consists of nonlinear systems like those of Lure problem where the nonlinear functions can violate the sector conditions around the origin. The developed procedure is based on the extension of invariance LaSalle principle and uses the general Lyapunov functions of Lure problem to estimate the attractor set and their associated attraction area. The parameters of the Lyapunov functions are obtained solving an optimization problem write like a linear matrix inequality (LMI).
|
Page generated in 0.3624 seconds