• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicações do método de indução matemática à geometria / Applications of the mathematical induction method to geometry

VELOZO NETO, Raimundo do Nascimento 01 June 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-09-12T20:44:07Z No. of bitstreams: 1 RaimundoVelozoNeto.pdf: 872870 bytes, checksum: ccaffc749ed9ed23b543712ba5273285 (MD5) / Made available in DSpace on 2017-09-12T20:44:07Z (GMT). No. of bitstreams: 1 RaimundoVelozoNeto.pdf: 872870 bytes, checksum: ccaffc749ed9ed23b543712ba5273285 (MD5) Previous issue date: 2017-06-01 / This work deals with the Method of Mathematical Induction, in particular, its use with a view to the solution of geometric problems. It initially some considerations are made about the expression "inductive reasoning" whose it meaning, as appropriately must be explained in the text, that differs from that of "mathematical induction". We prove the proposition that guarantees the use of the method based on its foundation, namely the axiom of mathematical induction (one of the postulates that characterize the natural numbers). It exhibited some examples of its use of Algebra and the Theory of Numbers. And then, some applications of the method of mathematical induction to the problems of Geometry are explored to obtain a geometric measure in terms of another(s), either for the demonstration of a proposition that insinuates itself true, or for the stages of construction of a figure given / Este trabalho trata do Método de Indução Matemática, em especial, de seu uso com vistas à solução de problemas geométricos. Inicialmente, são feitas algumas considerações acerca da expressão "raciocínio indutivo", cujo sentido, conforme apropriadamente explicado no texto, difere do de "indução matemática". É provada a proposição que garante o uso do método com base em seu fundamento, a saber, o axioma de indução matemática (um dos postulados que caracterizam os números naturais) e exibidos alguns exemplos de sua utilização em Álgebra e Teoria dos Números. Em seguida, são exploradas algumas aplicações do método de indução matemática à problemas de Geometria, seja para a obtenção de uma medida geométrica em termos de outra(s), para a demonstração de uma proposição que se insinua verdadeira, ou para a exibição das etapas de construção de uma dada figura.
2

Construções geométricas utilizando o aplicativo Euclidea / Geometric constructs using the Euclidean application

Sousa Filho, João Rodrigues de January 2017 (has links)
SOUSA FILHO, João Rodrigues de. Construções geométricas utilizando o aplicativo Euclidea. 54 f. Dissertação (Mestrado Profissional em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-09-15T04:41:13Z No. of bitstreams: 1 2017_dis_jrsousafilho.pdf: 1638940 bytes, checksum: 90574fddf2903840bfd512da93fb7993 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Estou devolvendo a Dissertação de JOÃO RODRIGUES DE SOUSA FILHO para que ele realize as correções que seguem listadas abaixo: 1- CAPA (altere o nome do curso que consta na capa PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA EM REDE NACIONAL) 2- FOLHA DE APROVAÇÃO (refaça a folha de aprovação colocando todos os seus elementos (nome do autor, título, descrição e nome dos membros da banca) em uma única página. OBS.: Verifique o modelo no GUIA DE NORMALIZAÇÃO DE TRABALHOS ACADÊMICOS DA UFC, disponível em: http://www.biblioteca.ufc.br/wp-content/uploads/2015/08/guia-normalizacao-trabalhos-ufc-2013.pdf 3- AGRADECIMENTOS (adicione ao termo AGRADECImEMTNOS a formatação CENTRALIZADO, NEGRITO e FONTE n 12) 4- EPÍGRAFE (coloque o a frase da epígrafe no seguinte formato: “A geometria é uma ciência de todas as espécies possíveis de espaços. ” (IMMANUEL KANT) 5- LISTA DE SÍMBOLOS (retire os parênteses que existem nas definições da lista de símbolos, iniciando cada definição com letra maiúscula. O termo LISTA DE SÍMBOLOS deve estar em negrito e fonte n 12) 6- NOMENCLATURA UTILIZADA (esta referida parte não pertence às seções da Dissertação, assim, coloque os símbolos e definições presentes nessa parte na LISTA DE SÍMBOLOS) 7- SUMÁRIO (veja o modelo correto de formatação do sumário no GUIA DE NORMALIZAÇÃO DA UFC) 8- CAPÍTULO 3 (as divisões do capítulo 3 que aparecem no sumário estão incorretas: primeiro, devem ser numeradas sucessivamente como: 3,1 ; 3.2 ; 3.2 ......... Acompanhadas do referido título que aparece no capítulo. Ex.: 3.1 Problema 1 – Dada uma circunferência r, construa o seu centro OBS.: ACRESCENTE A NUMERAÇÃO E A FORMATAÇÃO NEGRITO E FONTE N 12, TANTO NO SUMÁRIO COMO NAS SEÇÕES DO CAPÍTULO 3. 9- REFERÊNCIAS ( retire a numeração que acompanha o título das referências, tanto no sumário como na página referida, acrescente a formatação negrito, centralizado e fonte n 12. Atenciosamente, on 2017-09-15T16:36:12Z (GMT) / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-09-17T19:21:46Z No. of bitstreams: 1 2017_dis_jrsousafilho.pdf: 1649547 bytes, checksum: e22322b096b4354d0f26ebeb2a649bcf (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, A Dissertação de JOÃO RODRIGUES DE SOUSA FILHO ainda apresenta a alguns erros a serem corrigidos, os mesmos seguem listados abaixo: 1- SUMÁRIO (o alinhamento do sumário não estar igual ao modelo do GUIA DE NORMALIZAÇÃO DA UFC: o início de cada título e a quebra de linha devem estar alinhados na mesma posição. EX.: 1 INTRODUÇÃO.................00 2 O APLICATIVO.................00 2.1 Comandos da tela inicial..............................00 3 RESOLUÇÃO.................00 2- NUMERAÇÃO DE CAPÍTULOS (revise a numeração dos capítulos pois está diferente da que aparece no sumário: tem dois capítulos com a mesma numeração) 3- REFERÊNCIAS (troque o termo REFERÊNCIAS BIBLIOGRÁFICAS apenas por REFERÊNCIAS) 4- NUMERAÇÃO DE PÁGINAS (retire a numeração indevida de página que aparece na página 5) Atenciosamente, on 2017-09-18T14:13:09Z (GMT) / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-09-21T17:26:57Z No. of bitstreams: 1 2017_dis_jrsousafilho.pdf: 1731273 bytes, checksum: 458a12861fe92c965ad825895ee4d40b (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-22T11:12:19Z (GMT) No. of bitstreams: 1 2017_dis_jrsousafilho.pdf: 1731273 bytes, checksum: 458a12861fe92c965ad825895ee4d40b (MD5) / Made available in DSpace on 2017-09-22T11:12:19Z (GMT). No. of bitstreams: 1 2017_dis_jrsousafilho.pdf: 1731273 bytes, checksum: 458a12861fe92c965ad825895ee4d40b (MD5) Previous issue date: 2017 / The present dissertation intends, in a first moment, to explain the Euclidea application as well as its use in the learning process of plane geometry, including the solution of problems involving this subject. This proposal intends to reach part of the young people who use smartphones, bringing a great opportunity to make Math classes more attractive. In a second moment we will solve sixteen problems of the application and give rigorous proofs of their constructions. / A presente dissertação pretende, em um primeiro momento, explicar o aplicativo Euclidea bem como sua utilização no processo de aprendizagem de geometria plana, incluindo a resolução de problemas envolvendo este conteúdo. Essa proposta pretende atingir parte do universo jovem que usa aparelhos smartphones, trazendo assim uma grande oportunidade de tornar as aulas de Matemática mais atrativas. Em um segundo momento, abordaremos a resolução de dezesseis problemas do aplicativo e daremos demonstrações rigorosas de suas construções.

Page generated in 0.1026 seconds