Spelling suggestions: "subject:"problemas dde neumann"" "subject:"problemas dde heumann""
1 |
Large conformal metrics with prescribed sign-changing Gauss curvature and a critical Neumann problemRomán Parra, Carlos Patricio January 2014 (has links)
Ingeniero Civil Matemático / En esta memoria se estudian dos problemas semilineales elípticos clásicos en la literatura: el problema de la curvatura Gaussiana prescrita en dimensión 2, y el problema de Lin-Ni-Takagi con exponente crítico en dimensión 3. En ambos se encuentran soluciones con reviente cuando el valor de un parámetro involucrado se aproxima a cierto valor crítico.
En el primer capítulo se estudia el siguiente problema: Dada una función escalar $\kappa(x)$, suficientemente regular, definida en una variedad Riemanniana compacta $(M,g)$ de dimensión 2, se desea saber si $\kappa$ puede corresponder a la curvatura Gaussiana de $M$ para una métrica $g_1$, que es adicionalmente conforme a la métrica inicial $g$, es decir, $g_1=e^ug$ para alguna función escalar $u$ en $M$. Sea $f$ una función regular en $M$ tal que
\equ{f\geq 0,\quad f\not\equiv 0, \quad \min_M f=0.}
Sean $p_1,\ldots,p_n$ una colección de puntos cualesquiera en los que $f(p_i)=0$ y $D^2f(p_i)$ es no singular. Se demuestra que para todo $\la>0$ suficientemente pequeño, existe una familia de metricas conformes de tipo burbuja $g_\la=e^{u_\la}g$ tal que su curvatura Gaussiana está dada por la función que cambia de signo $K_{g_\la}=-f+\la^2$. Más aún, la familia $u_\la$ satisface
\equ{u_\la(p_j)=-4\log \la -2 \log \left(\frac{1}{\sqrt2}\log \frac{1}{\la}\right)+O(1),
\quad
\la^2e^{u_\la}\rightharpoonup 8\pi\sum_{i=1}^n\delta_{p_i},}
donde $\delta_p$ corresponde a la masa de Dirac en el punto $p$.
En el segundo capítulo se considera el problema
\equ{-\Delta u+\la u-u^5=0,\quad u>0 \quad \mbox{in }\Omega,\quad \ddn{u}=0\quad \mbox{on }\partial\Omega,}
donde $\Omega\subset \R^3$ es un dominio acotado con frontera regular $\partial\Omega$, $\la>0$ and $\nu$ denota la normal unitaria exterior a $\partial\Omega$. Se demuestra que cuando
$\la$ se apoxima por arriba a cierto valor explícitamente caracterizado en términos de funciones de Green, una familia de soluciones con reviente en un cierto punto interior del dominio existe.
|
2 |
Resultados do tipo Ambrosetti-Prodi para problemas quasilinearesNascimento, Moisés Aparecido do 04 December 2015 (has links)
Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-09-27T12:32:15Z
No. of bitstreams: 1
TeseMAN.pdf: 2601601 bytes, checksum: 70c6b910d382e2015025a5c8ec5ddd14 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-04T18:11:16Z (GMT) No. of bitstreams: 1
TeseMAN.pdf: 2601601 bytes, checksum: 70c6b910d382e2015025a5c8ec5ddd14 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-04T18:11:29Z (GMT) No. of bitstreams: 1
TeseMAN.pdf: 2601601 bytes, checksum: 70c6b910d382e2015025a5c8ec5ddd14 (MD5) / Made available in DSpace on 2016-10-04T18:11:38Z (GMT). No. of bitstreams: 1
TeseMAN.pdf: 2601601 bytes, checksum: 70c6b910d382e2015025a5c8ec5ddd14 (MD5)
Previous issue date: 2015-12-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / We present results of Ambrosseti-Prodi type to quasilinear problems involving the p-Laplace operator. We consider the scalar case and a a problem with systems of equations. In the scalar case, we work with the conditions of Neumann and Dirichlet. In the problem involving system, we consider the condition og Dirichlet. In order to get the results we use the theory of Leray-Schauder degree and a priori estimates. / Neste trabalho apresentamos resultados do tipo Ambrosseti-Prodi para problemas quasilineares envolvendo o aperador
p-Laplaciano. Considerando o caso escalar eu um problema com sistemas de equações. Para os casos escalares, trabalhamos com a condições de Neumann e Dirichlet, já para o problema envolvendo sistema, consideramos a condição Dirichlet. Para obter mais resultados usamos a teoria do grau de Leray-Schauder e estimativas a priori.
|
Page generated in 0.0702 seconds