• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plasma spray deposition of polymer coatings

Bao, Yuqing January 1995 (has links)
This work investigates the feasibility of the use of plasma spray deposition as a method of producing high performance polymer coatings. The work concentrates on the understanding of the processing of the plasma spraying of polymers, the behaviour of polymeric materials during deposition, and the study of process-structure-properties relationships. Processing modelling for the three stages of the evolution of a polymer deposit (droplet-splat-coating) has been carried out using heat transfer theory. A theoretical model is proposed which consists of three parts: the first part predicts the temperature profile of in-flight particles within plasma jet, the second part predicts the cooling of isolated splats impacting on a substrate and the third part, the heat transfer through the coating thickness. The heat transfer analysis predicts that the development of large temperature gradients within the particle is a general characteristics of polymers during plasma spraying. This causes difficulties for polymer particles to be effectively molten within the plasma jet without decomposition. The theoretical calculations have predicted the effect of processing parameters on the temperature, the degree of melting and decomposition of in-flight polymer particles. With the aid of the model, the conditions for the preparation of high integrity thermoplastic deposits have been established by the control of the plasma arc power, plasma spraying distance, feedstock powder injection, torch traverse speed and feedstock particle size. The optimal deposition conditions are designed to produce effective particle melting in the plasma, extensive flow on impact, and minimal thermal degradation. The experimental work on optimizing processing parameters has confirmed the theoretical predictions. Examination of polymer coating structures reveals that the major defects are unmelted particles, cracks and pores. Five major categories of pores have been classified. It also revealed a significant loss in crystallinity and the presence of a minor metastable phase in the plasma deposited polyamide coatings due to rapid solidification. The study has indicated that the molecular weight of a polymer plays an important role on the splat flow and coating structure. Under non-optimal deposition condition, substantial thermal degradation occurred for which a chain scission mechanism is proposed for plasma deposited polyamide coatings. There are difficulties in achieving cross-linking during plasma spray deposition of thermosets. The theoretical calculations predict that adequate cross-linking is unlikely in a coating deposited under normal conditions, but preheating the substrate to above the cross-linking temperature improves the degree of cross-linking of the coatings substantially. In addition, the coating thickness has a major effect on the degree of cross-linking of thermosets. The calculations also predict that lowering the thermal conductivity by applying a thermal barrier undercoat and using a faster curing agent to reduce time required for the cross-linking reaction can improve the degree of cross-linking of thermoset deposits. The experimental results for the degree of cross-linking and wear resistance confirmed these predictions.
2

Binder-Powder Interaction: Investigating the Process-Property Relations in Metal Binder Jetting

Rahman, Kazi Moshiur 27 January 2023 (has links)
Binder jetting (BJT) is a powder bed based additive manufacturing (AM) process where the interaction of inkjetted droplets of a binder and particles in the powder bed create 3D geometries in a layerwise fashion. The fabricated green parts are usually thermally post-processed for densification and strengthening. BJT holds distinct advantages over other AM processes as it can fabricate parts with virtually any materials (metals, ceramics, and polymers) in a fast and cost-effective way, while achieving isotropic material properties in the parts. However, broad adoption of this process for production is still lagging, partially due to the lack of repeatable part quality, which largely stems from the limited understanding of the process physics, namely binder-powder (B/P) interaction. To bridge this knowledge gap, it is necessary to understand the implications of B/P interaction on process-structure-property relationships and discover ways to achieve new functionalities for enhanced properties. Thus, this research is broadly focused in establishing understanding in (i) binder-powder interaction and (ii) the impact of binder on part densification. Prior studies have focused on the effects of powder interaction with micro/meso-scale binder droplets, despite commercial BJT systems featuring picoliter-scale droplets. These studies have explored the effects of B/P interaction on printed primitive formation, but it's implication on final part properties have not been studied. In this work, the effects of particle size distribution and droplet size variation on final part properties are explored. Additionally, the effects of B/P interaction on accuracy and the resolution of the printed parts are investigated. Densification of parts is a primary focus of many BJT studies as it dictates the final part properties and is influenced by factors from both the printing process and post-processing treatments. Binder plays an integral role in the shaping of parts and maintaining part integrity until densification through sintering. Prior studies on the effects of binder content on densification are inclusive. In this work, a new approach termed as "shell printing" is introduced to vary the binder content in the parts. The process-structure-properties influenced by this approach are investigated. It was found that binder hinders densification, and through the selective variation of binder content throughout the part volume, this new approach is introduced as a means for enhancing part properties. Finally, the insights from the impact of binder on densification are leveraged to create an anti-counterfeiting tagging strategy by controlling the pores and grain microstructures inside a part. In this novel approach, binder concentration is controlled in a manner that the stochastically formed pores are clustered to create a designed domain that represents a secret 'tag' within the part volume. The created tagging domains, and the feature resolvability of this approach are investigated through metallographic characterization and non-destructively evaluated through micro-computed tomography. / Doctor of Philosophy / Binder jetting (BJT) is an additive manufacturing (AM) process to create 3D geometries from powder particles. Liquid droplets of binder from an inkjet printhead are jetted on a bed of packed powders, binding the particles. The as-printed parts, known as green parts, are generally fragile and require thermal post-processing (through sintering) for densification and strengthening. BJT holds distinct advantages over other AM processes as it can fabricate parts with virtually any powdered materials (metals, ceramics, and polymers) in a fast and cost-effective way. However, broad adoption of this process for production is still lagging, partially due to the lack of repeatable part quality, which largely stems from the limited understanding of the process physics, namely binder-powder (B/P) interaction. In this study the implications of B/P interaction on part quality (e.g., density, strength) and dimensional accuracy are studied. Additionally, the impact of binder on sintering densification is studied. Specifically, the effects of varying amount of binder on sintered part density, strength and internal pore and grain microstructures are empirically investigated. Finally, a novel anti-counterfeiting method for BJT printed parts is introduced based on the insights gained from the study of the impact of binder on densification. Through control over binder placement throughout the part, porous regions can be generated selectively throughout the part volume, which can be detected through x-ray computed tomography. Overall, an improved understanding of BJT processing conditions is achieved through this research, which can guide future designers to fabricate BJT parts with enhanced part properties and functionality.

Page generated in 0.0932 seconds