• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética / Development of wavelet transform based filters for magnetic resonance spectroscopy

Menezes, Leon Paixão 24 November 2017 (has links)
Existe hoje uma grande diversidade de técnicas modernas na física médica que são fundamentadas na tecnologia de ressonância magnética nuclear. Dentre estas, a espectroscopia por ressonância magnética é utilizada para medir a concentração de determinados metabólitos no paciente, permitindo o diagnóstico de doenças através de anormalidades no resultado. Dadas as limitações experimentais para melhorar a aquisição do sinal, seja na parte instrumental ou ainda pela necessidade de minimizar o tempo total dos exames, a utilização de técnicas de processamento de sinais apresenta soluções para a melhor visualização e manipulação do sinal estudado. Dentre estas, está o uso de filtros para atenuar os impactos do ruído nos dados amostrados. Recentemente, diversas áreas que necessitam de processamento de sinais têm explorado implementações de filtros que utilizam a transformada wavelet, apresentando resultados promissores com esta nova abordagem. Partindo de estudos prévios na área de espectroscopia por ressonância magnética, implementamos neste trabalho filtros com transformada wavelet, utilizando a metodologia Wavelet Shrinkage Denoising (WSD). A etapa de maior importância deste procedimento é o cálculo do limiar, isto é, o valor a partir do qual os coeficientes devem ser considerados uma representação de ruído (e portanto atenuados); além do método descrito anteriormente na literatura, foram desenvolvidas neste trabalho outras duas novas formas para este cálculo, totalizando três filtros. O primeiro método utiliza a estimativa de risco não-enviesada de Stein (SURE), o segundo uma estimativa do desvio padrão característico do ruído, calculado em uma porção sem picos do espectro, e o terceiro, por fim, introduz informação do sinal à etapa de limiarização, utilizando um procedimento de fitting para estimar regiões do espectro a serem preservadas. A performance destes filtros foi comparada entre si, e também com um método de referência utilizando a transformada de Fourier, primeiro em sinais simulados, e em seguida em sinais in vivo experimentais. Os resultados apresentam uma grande melhora na performance anteriormente documentada, com proposições de novas formas de explorar o potencial de filtros baseados em transformada wavelet. / Many of today techniques in medical physics are based on nuclear magnetic resonance technology. Among these, magnetic resonance spectroscopy is used to measure the concentration of certain metabolites in the patient, allowing the diagnosis of diseases through abnormalities in the results. Given the experimental limitations to improve the quality of the acquired signal, either by instrumental methods or due to the need to minimize the total time elapsed on exams, employing signal processing techniques presents solutions for best visualization and manipulation of the studied signal. Among these, there is the development of filters to mitigate the impacts of noise on the sampled data. Recently, several areas that require signal processing have explored filter implementations that use the wavelet transform, presenting promising results with this new approach. Based on previous studies in the area of magnetic resonance spectroscopy, we implemented wavelet transform filters using the Wavelet Shrinkage Denoising (WSD) methodology. A crucial step in this procedure is the calculation of the threshold, as this value establishes which coefficients are to be considered a noise representation (and therefore attenuated); in addition to the method described previously in the literature, two other new proceedures were developed in this work, totaling three filters. The first method uses the Stein unbiased risk estimator (SURE), the second an estimate of the characteristic standard deviation of the noise, calculated in a portion without peaks of the spectrum, and the third, finally, inputs information from the signal at the thresholding using a fitting procedure to estimate regions of the spectrum that must be preserved. The performance of these filters was compared between each other, and also to a reference method using the Fourier transform, first on simulated signals, and then on experimental in vivo signals. Results show a great improvement compared to performance previously documented, bringing new ways to explore the potential of filters based on wavelet transform.
2

Desenvolvimento de filtros baseados em transformadas wavelet para espectroscopia por Ressonância Magnética / Development of wavelet transform based filters for magnetic resonance spectroscopy

Leon Paixão Menezes 24 November 2017 (has links)
Existe hoje uma grande diversidade de técnicas modernas na física médica que são fundamentadas na tecnologia de ressonância magnética nuclear. Dentre estas, a espectroscopia por ressonância magnética é utilizada para medir a concentração de determinados metabólitos no paciente, permitindo o diagnóstico de doenças através de anormalidades no resultado. Dadas as limitações experimentais para melhorar a aquisição do sinal, seja na parte instrumental ou ainda pela necessidade de minimizar o tempo total dos exames, a utilização de técnicas de processamento de sinais apresenta soluções para a melhor visualização e manipulação do sinal estudado. Dentre estas, está o uso de filtros para atenuar os impactos do ruído nos dados amostrados. Recentemente, diversas áreas que necessitam de processamento de sinais têm explorado implementações de filtros que utilizam a transformada wavelet, apresentando resultados promissores com esta nova abordagem. Partindo de estudos prévios na área de espectroscopia por ressonância magnética, implementamos neste trabalho filtros com transformada wavelet, utilizando a metodologia Wavelet Shrinkage Denoising (WSD). A etapa de maior importância deste procedimento é o cálculo do limiar, isto é, o valor a partir do qual os coeficientes devem ser considerados uma representação de ruído (e portanto atenuados); além do método descrito anteriormente na literatura, foram desenvolvidas neste trabalho outras duas novas formas para este cálculo, totalizando três filtros. O primeiro método utiliza a estimativa de risco não-enviesada de Stein (SURE), o segundo uma estimativa do desvio padrão característico do ruído, calculado em uma porção sem picos do espectro, e o terceiro, por fim, introduz informação do sinal à etapa de limiarização, utilizando um procedimento de fitting para estimar regiões do espectro a serem preservadas. A performance destes filtros foi comparada entre si, e também com um método de referência utilizando a transformada de Fourier, primeiro em sinais simulados, e em seguida em sinais in vivo experimentais. Os resultados apresentam uma grande melhora na performance anteriormente documentada, com proposições de novas formas de explorar o potencial de filtros baseados em transformada wavelet. / Many of today techniques in medical physics are based on nuclear magnetic resonance technology. Among these, magnetic resonance spectroscopy is used to measure the concentration of certain metabolites in the patient, allowing the diagnosis of diseases through abnormalities in the results. Given the experimental limitations to improve the quality of the acquired signal, either by instrumental methods or due to the need to minimize the total time elapsed on exams, employing signal processing techniques presents solutions for best visualization and manipulation of the studied signal. Among these, there is the development of filters to mitigate the impacts of noise on the sampled data. Recently, several areas that require signal processing have explored filter implementations that use the wavelet transform, presenting promising results with this new approach. Based on previous studies in the area of magnetic resonance spectroscopy, we implemented wavelet transform filters using the Wavelet Shrinkage Denoising (WSD) methodology. A crucial step in this procedure is the calculation of the threshold, as this value establishes which coefficients are to be considered a noise representation (and therefore attenuated); in addition to the method described previously in the literature, two other new proceedures were developed in this work, totaling three filters. The first method uses the Stein unbiased risk estimator (SURE), the second an estimate of the characteristic standard deviation of the noise, calculated in a portion without peaks of the spectrum, and the third, finally, inputs information from the signal at the thresholding using a fitting procedure to estimate regions of the spectrum that must be preserved. The performance of these filters was compared between each other, and also to a reference method using the Fourier transform, first on simulated signals, and then on experimental in vivo signals. Results show a great improvement compared to performance previously documented, bringing new ways to explore the potential of filters based on wavelet transform.
3

Classificação inteligente de sinais musicais utilizando a transformada Wavelet-Packet / Intelligent classification of musical signals using a Wavelet Packet transform

Scalvenzi, Rafael Rubiati 20 July 2018 (has links)
Submitted by RAFAEL RUBIATI SCALVENZI (rafaelrubiati@yahoo.com) on 2018-08-23T14:58:47Z No. of bitstreams: 1 Dissertacao Rafael Rubiati.pdf: 3684917 bytes, checksum: 933c9cd1b163eaf62189c9f2bcfcdd2f (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-08-23T19:34:48Z (GMT) No. of bitstreams: 1 scalvenzi_rr_me_sjrp_.pdf: 3684917 bytes, checksum: 933c9cd1b163eaf62189c9f2bcfcdd2f (MD5) / Made available in DSpace on 2018-08-23T19:34:48Z (GMT). No. of bitstreams: 1 scalvenzi_rr_me_sjrp_.pdf: 3684917 bytes, checksum: 933c9cd1b163eaf62189c9f2bcfcdd2f (MD5) Previous issue date: 2018-07-20 / A área na qual a música está inserida requer, para sua compreensão, considerável abstração. Neste âmbito, a análise matemático-computacional possui papel importante, principalmente para planejar a interatividade entre aluno e computador, potencializando o aprendizado musical. Embora um número considerável de estudos em diferentes contextos sejam dedicados à classificação das estruturas sonoras, os procedimentos de análise em um grande conjunto de sinais podem tornar-se uma tarefa difícil e exaustiva. Diante do exposto, este trabalho tem como objetivo a proposição e a implementação de um método capaz de reconhecer e classificar sinais musicais em tempo real, visando auxiliar os aprendizes. No método proposto, um conjunto relevante de eventos musicais é inspecionado por meio da análise de multirresolução baseada na Transformada Wavelet-Packet, escolhida em função da característica multidimensional encontrada na música, a qual permite isolar diferentes eventos musicais em níveis de decomposição wavelet distintos. Apoiado por um processo de autocorrelação e uma rede neural artificial, cada padrão sônico é associado ao seu respectivo evento musical. Testes envolvendo centenas de sinais permitiram obter uma acurácia quase plena com um tempo relativamente bastante pequeno de análise em função da baixa ordem de complexidade computacional do algoritmo implementado, reafirmando a sua aplicabilidade / Music belongs to an area which requires a considerable piece of abstraction for its understanding. In this domain, computational and mathematical analyses play an important role, particularly for planning human-machine interaction and enhancing learning. Although a considerable number of studies in different musical contexts are dedicated to the classification of the structures present in sound signals, the inspection of long clips is a challenge. Thus, this work proposes and implements a method capable of identifying and classifying musical signals in real-time, helping music students. Specifically, multiresolution analysis using the Wavelet-Packet Transform is adopted, allowing for different musical events to be isolated in distinct wavelet levels of decomposition. Based on an autocorrelation and an artificial neural network, each sonic pattern is associated with a respective musical event. Tests using hundreds of music clips exhibit almost full accuracy with relatively very short time consumption as a function of the algorithm low level of computational complexity, reassuring its applicability.
4

Calibra??o cega de receptores cinco-portas baseada em separa??o cega de fontes

Vidal, Francisco Jos? Targino 24 May 2013 (has links)
Made available in DSpace on 2014-12-17T14:55:16Z (GMT). No. of bitstreams: 1 FranciscoJTV_TESE.pdf: 16694617 bytes, checksum: 98c04bab1f2a3180ba8bd87b03174888 (MD5) Previous issue date: 2013-05-24 / The exponential growth in the applications of radio frequency (RF) is accompanied by great challenges as more efficient use of spectrum as in the design of new architectures for multi-standard receivers or software defined radio (SDR) . The key challenge in designing architecture of the software defined radio is the implementation of a wide-band receiver, reconfigurable, low cost, low power consumption, higher level of integration and flexibility. As a new solution of SDR design, a direct demodulator architecture, based on fiveport technology, or multi-port demodulator, has been proposed. However, the use of the five-port as a direct-conversion receiver requires an I/Q calibration (or regeneration) procedure in order to generate the in-phase (I) and quadrature (Q) components of the transmitted baseband signal. In this work, we propose to evaluate the performance of a blind calibration technique without additional knowledge about training or pilot sequences of the transmitted signal based on independent component analysis for the regeneration of I/Q five-port downconversion, by exploiting the information on the statistical properties of the three output signals / Estudos recentes apontam que o aumento nas aplica??es de r?dio frequ?ncia (RF) vem acompanhado por grandes desafios tanto no uso eficiente do espectro eletromagn?tico quanto no projeto de novas arquiteturas para receptores multi-padr?o, ou r?dio definidos por software (RDS). O principal desafio da arquitetura f?sica de um RDS ? a implementa??o de um receptor banda-larga com caracter?sticas de baixo custo, baixo consumo, maior grau de integra??o e flexibilidade. A arquitetura homodina, baseada na tecnologia cinco-portas, surge como uma alternativa para aplica??es em r?dio definidos por software. No entanto, a regenera??o das componentes em fase e quadratura, no receptor cinco-portas, comumente denominada de calibra??o, constitui um dos maiores desafios na aplica??o dessa tecnologia. Os m?todos de calibra??o, propostos na literatura, normalmente baseiam-se no conhecimento do modelo matem?tico do circuito, em que o mesmo ? calibrado previamente (off-line), para um tipo de sinal com caracter?sticas espec?ficas ou em tempo real, com base no conhecimento da sequ?ncia de aprendizagem e do tipo de modula??o. Nesse trabalho, ? apresentado uma proposta de regenera??o cega dessas componentes, para um receptor homodino cinco-portas, utilizando a abordagem denominada Separa??o Cega de Fontes (an?lise de componentes independentes - ICA), que explora as caracter?sticas estat?sticas dos tr?s sinais de sa?da do receptor cinco-portas. A valida??o dessa abordagem ? realizada por meio de simula??o e de resultados experimentais obtidos para o receptor cinco portas implementado em tecnologia de microfita

Page generated in 0.1041 seconds