• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estima??o e previs?o no processo INARCH(2)

Silva, Felipe Rodrigues da 05 February 2016 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-07-11T17:32:14Z No. of bitstreams: 1 FelipeRodriguesDaSilva_DISSERT.pdf: 961378 bytes, checksum: cb3fea242bd93af6395fb24248819434 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-07-15T21:23:21Z (GMT) No. of bitstreams: 1 FelipeRodriguesDaSilva_DISSERT.pdf: 961378 bytes, checksum: cb3fea242bd93af6395fb24248819434 (MD5) / Made available in DSpace on 2016-07-15T21:23:21Z (GMT). No. of bitstreams: 1 FelipeRodriguesDaSilva_DISSERT.pdf: 961378 bytes, checksum: cb3fea242bd93af6395fb24248819434 (MD5) Previous issue date: 2016-02-05 / Nas ?ltimas d?cadas o estudo de s?ries temporais de valores inteiros tem ganhado notoriedade devido a sua ampla aplicabilidade, por exemplo, modelar o n?mero de acidentes com autom?veis em uma determinada rodovia, ou, o n?mero de pessoas infectadas por um v?rus. Um dos grandes interesses desta ?rea de estudo est? em fazer previs?es, por este motivo ? de grande import?ncia propor metodologias para fazer previs?es futuras, as quais devem, dada a natureza dos dados, apresentar valores inteiros n?o negativos.Neste trabalho concentramo-nos em estudar e propor previs?es um, dois e h passos ? frente para os processos autorregressivos de segunda ordem condicionalmente heterosced?sticos de valores inteiros, Integer-valued second-order Autoregressive Conditional Heteroskedasticity Processes [INARCH(2)], e estudar algumas propriedades te?ricas deste modelo, como o r-?simo momento marginal e a distribui??o assint?tica dos estimadores de m?nimos quadrados condicionais referentes ao processo INARCH(2). Al?m disso, verificamos, atrav?s de ensaios de Monte Carlo, o comportamento dos estimadores dos par?metros do processo INARCH(2), obtidos atrav?s de tr?s m?todos de estima??o, Yule-Walker, m?nimos quadrados condicionais e m?xima verossimilhan?a condicional, em termos de erro quadr?tico m?dio, erro absoluto m?dio e vi?s. Apresentamos algumas propostas de previs?o para o processo INARCH(2) e comparamos as previs?es propostas via simula??es de Monte Carlo. Como aplica??o da teoria apresentada, modelamos dados referentes ao n?mero de nascidos vivos do sexo masculino de m?es residentes na cidade de Riachuelo no estado do Rio Grande do Norte. / In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.

Page generated in 0.0453 seconds