• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prévision linéaire des processus à longue mémoire

Godet, Fanny 05 December 2008 (has links) (PDF)
Nous étudions des méthodes de prévision pour les processus à longue mémoire. Ils sont supposés stationnaires du second ordre, linéaires, causals et inversibles. Nous supposons tout d'abord que l'on connaît la loi du processus mais que l'on ne dispose que d'un nombre fini d'observations pour le prédire. Nous proposons alors deux prédicteurs linéaires : celui de Wiener-Kolmogorov tronqué et celui construit par projection sur le passé fini observé. Nous étudions leur comportement lorsque le nombre d'observations disponibles tend vers l'infini. Dans un deuxième temps nous ne supposons plus la loi du processus connue, il nous faut alors estimer les fonctions de prévision obtenues dans la première partie. Pour le prédicteur de Wiener-Kolmogorov tronqué, nous utilisons une approche paramétrique en estimant les coefficients du prédicteur grâce à l'estimateur de Whittle calculé sur une série indépendante de la série à prédire. Pour le prédicteur obtenu par projection, on estime les coefficients du prédicteur en remplaçant dans les équations de Yule-Walker les covariances par les covariances empiriques calculé sur une série indépendante ou sur la série à prédire. Pour les deux prédicteurs, on estime les erreurs quadratiques due à l'estimation des coefficients et on prouve leurs normalités asymptotiques.
2

Processus multifractals en finance et valorisation d'options par minimisation de risques extrêmes.

Pochart, Benoit 27 November 2003 (has links) (PDF)
Dans une première partie, après avoir rappelé les principales caractéristiques statistiques des séries financières, en particulier l'existence de corrélations non linéaires à longue portée et d'une asymétrie fortement persistante, nous mettons en évidence la pertinence des processus multifractals pour la modélisation de ces faits stylisés. Les constructions récemment proposées dans la littérature demeurent cependant exclusivement symétriques et nous montrons comment introduire de l'asymétrie dans ces modèles sans sacrifier leurs propriétés d'échelle. Il est alors possible de rendre compte du phénomène de smile de volatilité. Dans une deuxième partie, nous proposons une méthode numérique pour la valorisation et la couverture d'options en marché incomplet. Notre algorithme peut en outre être généralisé sans difficulté pour tenir compte d'autres imperfections du marché comme les frais de transaction.
3

Modélisation et détection de ruptures des signaux physiologiques issus de compétitions d'endurance

Kammoun, Imen 19 December 2007 (has links) (PDF)
Ce travail de thèse porte sur la modélisation et l'estimation de paramètres pertinents pour les signaux de fréquences cardiaques (FC) instantanées. Nous nous intéressons à un paramètre (appelé grossièrement "fractal"), qui témoigne de la régularité locale de la trajectoire et de la dépendance entre les données. Les propriétés asymptotiques de la fonction DFA (Detrended Fluctuation Analysis) et de l'estimateur de H sont étudiées pour le bruit gaussien fractionnaire (FGN) et plus généralement pour une classe semi-paramétrique de processus stationnaires à longue mémoire avec ou sans tendance. On montre que cette méthode n'est pas robuste. On propose la modélisation des séries de FC par une généralisation du FGN, appelée bruit gaussien localement fractionnaire. Un tel processus stationnaire est construit à partir du paramètre dit de fractalité locale (une sorte de paramètre de Hurst avec des valeurs dans IR) sur une bande de fréquences. L'estimation du paramètre est faite par une analyse par ondelettes, tout comme le test d'adéquation. On montre la pertinence du modèle et une évolution du paramètre pendant la course. Une détection des changements de ce paramètre pourrait être extrêmement appropriée. On propose alors une méthode de détection de multiples ruptures du paramètre de longue mémoire (respectivement d'autosimilarité, de fractalité locale). Un estimateur des points de changements est construit, il vérifie un théorème limite. Un théorème de la limite centrale est établi pour l'estimateur des paramètres et un test d'ajustement est mis en place dans chaque zone où le paramètre est inchangé. Enfin, on montre la même évolution du paramètre de fractalité locale sur les FC.

Page generated in 0.0886 seconds