• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Empirical processes of multiple mixing data / Processus empiriques de données à mélange multiple

Tusche, Marco 29 November 2013 (has links)
Cette thèse étudie la convergence en loi des processus empiriques de données à mélange multiple. Son contenu correspond aux articles : Durieu et Tusche (2012), Dehling, Durieu, et Tusche (2012), et Dehiing, Durieu et Tusche (2013). Nous suivons l’approche par approximation introduite dans Dehling, Durieu, et Vo1n (2009) et Dehling and Durieu (2011), qui ont établi des théorèmes limite centraux empiriques pour des variables aléatoires dépendants à valeurs dans R ou RAd, respectivement. En développant leurs techniques, nous généralisons leurs résultats à des espaces arbitraires et à des processus empiriques indexés par des classes de fonctions. De plus, nous étudions des processus empiriques séquentiels. Nos résultats s’appliquent aux chaînes de Markov B-géométriquement ergodiques, aux modèles itératifs lipschitziens, aux systèmes dynamiques présentant un trou spectral pour l’opérateur de Perron-Frobenius associé, ou encore, aux automorphismes du tore. Nous établissons des conditions garantissant la convergence du processus empirique de tels modèles vers un processus gaussien. / The present thesis studies weak convergence of empirical processes of multiple mixing data. It is based on the articles Durieu and Tusche (2012), Dehling, Durieu, and Tusche (2012), and Dehling, Durieu, and Tusche (2013). We follow the approximating class approach introduced by Dehling, Durieu, and Voln (2009)and Dehling and Durieu (2011), who established empirical central limit theorems for dependent R- and R”d-valued random variables, respectively. Extending their technique, we generalize their results to arbitrary state spaces and to empirical processes indexed by classes of functions. Moreover we study sequential empirical processes. Our results apply to B-geometrically ergodic Markov chains, iterative Lipschitz models, dynamical systems with a spectral gap on the Perron—Frobenius operator, and ergodic toms automorphisms. We establish conditions under which the empirical process of such processes converges weakly to a Gaussian process.

Page generated in 0.0984 seconds