• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bootstrap and uniform bounds for Harris Markov chains / Bootstrap et bornes uniformes pour des chaînes de Markov Harris récurrentes

Ciolek, Gabriela 14 December 2018 (has links)
Cette thèse se concentre sur certaines extensions de la théorie des processus empiriques lorsque les données sont Markoviennes. Plus spécifiquement, nous nous concentrons sur plusieurs développements de la théorie du bootstrap, de la robustesse et de l’apprentissage statistique dans un cadre Markovien Harris récurrent positif. Notre approche repose sur la méthode de régénération qui s’appuie sur la décomposition d’une trajectoire de la chaîne de Markov atomique régénérative en blocs d’observations indépendantes et identiquement distribuées (i.i.d.). Les blocs de régénération correspondent à des segments de la trajectoire entre des instants aléatoires de visites dans un ensemble bien choisi (l’atome) formant une séquence de renouvellement. Dans la premiére partie de la thèse nous proposons un théorème fonctionnel de la limite centrale de type bootstrap pour des chaînes de Markov Harris récurrentes, d’abord dans le cas de classes de fonctions uniformément bornées puis dans un cadre non borné. Ensuite, nous utilisons les résultats susmentionnés pour obtenir unthéorème de la limite centrale pour des fonctionnelles Fréchet différentiables dans un cadre Markovien. Motivés par diverses applications, nous discutons la manière d’étendre certains concepts de robustesse à partir du cadre i.i.d. à un cas Markovien. En particulier, nous considérons le cas où les données sont des processus Markoviens déterministes par morceaux. Puis, nous proposons des procédures d’échantillonnage résiduel et wild bootstrap pour les processus périodiquement autorégressifs et établissons leur validité. Dans la deuxième partie de la thèse, nous établissons des versions maximales d’inégalités de concentration de type Bernstein, Hoeffding et des inégalités de moments polynomiales en fonction des nombres de couverture et des moments des temps de retour et des blocs. Enfin, nous utilisons ces inégalités sur les queues de distributions pour calculer des bornes de généralisation pour une estimation d’ensemble de volumes minimum pour les chaînes de Markov régénératives. / This thesis concentrates on some extensions of empirical processes theory when the data are Markovian. More specifically, we focus on some developments of bootstrap, robustness and statistical learning theory in a Harris recurrent framework. Our approach relies on the regenerative methods that boil down to division of sample paths of the regenerative Markov chain under study into independent and identically distributed (i.i.d.) blocks of observations. These regeneration blocks correspond to path segments between random times of visits to a well-chosen set (the atom) forming a renewal sequence. In the first part of the thesis we derive uniform bootstrap central limit theorems for Harris recurrent Markov chains over uniformly bounded classes of functions. We show that the result can be generalized also to the unbounded case. We use the aforementioned results to obtain uniform bootstrap central limit theorems for Fr´echet differentiable functionals of Harris Markov chains. Propelledby vast applications, we discuss how to extend some concepts of robustness from the i.i.d. framework to a Markovian setting. In particular, we consider the case when the data are Piecewise-determinic Markov processes. Next, we propose the residual and wild bootstrap procedures for periodically autoregressive processes and show their consistency. In the second part of the thesis we establish maximal versions of Bernstein, Hoeffding and polynomial tail type concentration inequalities. We obtain the inequalities as a function of covering numbers and moments of time returns and blocks. Finally, we use those tail inequalities toderive generalization bounds for minimum volume set estimation for regenerative Markov chains.

Page generated in 0.0692 seconds