• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Évolution thermique et mécanique des zones de cisaillement : approche analytique, numérique et confrontation aux données de terrain / Thermal and mechanical evolution of shear zones : analytical and numerical approach, and comparison with the field data

Duprat-Oualid, Sylvia 12 December 2014 (has links)
Les zones de cisaillement constituent des objets structuraux communs de la lithosphère. À grande échelle, elles sont le siège principal des déplacements entre plaques tectoniques, accommodant de grandes quantités de déformation. La compréhension de leur comportement mécanique dans le temps et l'espace est donc essentielle pour la connaissance générale de la dynamique de la lithosphère. La température joue un rôle majeur sur la loi de comportement rhéologique qui caractérise le domaine ductile (en profondeur), réduisant alors efficacement la résistance mécanique. Chaque roche possède en outre des propriétés mécaniques intrinsèques qui varient en fonction de sa composition minéralogique, de sa texture et de sa structure interne. Or, en l'absence de grandeurs directement mesurables en profondeur, la rhéologie de la lithosphère demeure sujette à diverses interprétations. Le comportement mécanique des zones de cisaillement est d'autant plus méconnu qu'elles sont le siège d'intenses changements de la nature des roches et de perturbations thermiques majeures. En particulier, l'énergie mécanique qui y est convertie en chaleur (shear heating) peut engendrer une étroite interrelation entre thermique et mécanique. Ce travail de thèse vise à contribuer à la connaissance générale de la rhéologie des zones de cisaillement lithosphérique. Une approche originale a été mise en place, se basant sur l'évolution thermique aux abords et au sein des zones de cisaillement. Sur la base de modèles numériques thermo-cinématiques 2-D et de développements analytiques, la variabilité de premier ordre de l'évolution et de la perturbation thermique est analysée et quantifiée au regard de l'influence des trois processus thermiques majeurs que sont la diffusion, l'advection et le shear heating. Les résultats sont confrontés aux signatures thermiques métamorphiques associées aux chevauchements intra-continentaux pour lesquels les influences des processus d'accrétion et d'érosion sont également examinées. Le cas du Main Central Thrust (Himalaya), associé à une inversion thermique métamorphique bien développée, est pris comme exemple de référence. Nos résultats quantitatifs mettent en avant le rôle crucial du shear heating, notamment de la variabilité de la résistance mécanique des zones de cisaillement. L'accent est mis sur l'importance des paramètres de fluage des roches. L'étude de zones de cisaillement centimétriques développées au sein de la granodiorite du Zillertal (fenêtre des Tauern, Alpes) à la faveur de faibles variations de la composition minéralogique révèle l'extrême sensibilité de la rhéologie des roches ignées représentatives de la croûte continentale. Les conséquences de cette variabilité intense à petite échelle sont finalement discutées au regard des rhéologies classiquement considérées dans les modèles qui s'intéressent aux processus qui régissent la dynamique de la lithosphère. / Shear zones are common structural features in the lithosphere and occur at various scales (from microscopic to lithospheric). At the lithospheric scale, they concentrate most of the relative movements between tectonic plates, and therefore, accommodate a high amount of strain. Consequently, the understanding of both their spatial and temporal mechanical behaviour is crucial for the general knowledge of the lithosphe dynamics. Rheology of rocks, which define their mechanical behaviour, is controlled by physical laws that predict how they deform under some stresses. Temperature plays a major role in the creep-dislocation behaviour, which characterizes the ductile domain (in depth), decreasing efficiently the rock strength. Furthermore, each rock has intrinsic mechanical properties, which depend on its mineralogical composition, texture and internal structures. However, due to the lack of data directly measurable deeper than a few kilometres, the lithosphere rheology, and in particular the continental lithosphere remains subject to drastically different interpretations. The mechanical behaviour of major shear zones is not fully understood, as they are the location of intense changes of both the rock internal nature and major thermal perturbations. Especially, the mechanical energy, converted into heat (shear heating) causes a close interaction between thermal ad mechanical evolutions. This thesis aims to better understand the rheological state of lithospheric scale shear zones. For this purpose, we used an original approach, based on the temperature field evolution around and within such shear zones. From 2D numerical thermo-kinematic models and analytical developments, the first order variability of thermal evolution and perturbation is anal- ysed and quantified with respect to the impact of three major thermal processes, defined as diffusion, advection and shear heating. Results are compared to metamorphic thermal signatures associated to intra-continental thrust zones for which the influence of both accretion and erosion was also investigated. The case of the Main Central Thrust (MCT) in the Himalayas, whose the inverse metamorphic thermal zonation has been extensively studied, was chosen as the main natural analogue. Our quantitative results highlight the crucial role of shear heating, and more particularly of mechanical strength variability within shear zones. We thus emphasise on the importance of rock creep parameters. The study of centimetre-scale shear zones, which developed within the granodiorite of the Zillertal nappe (Tauern window, Tyrol, Alps) thanks to little local variations of the mineralogical composition, reveals the extreme sensitivity of igneous rocks rheology, representative of the continental crust. The consequences of such an intense variability, revealed at small scale are finally discussed with regard to rheologies usually considered in models that focus on processes controlling lithosphere dynamics.
2

Thermal stability of sub-Arctic highways : impacts of heat advection triggered by mobile water flow under an embankment

Chen, Lin 09 1900 (has links)
Les infrastructures de transport est essentielle au maintien et à l'expansion des activités sociales et économiques dans les régions circumpolaires. À mesure que le climat se réchauffe, la dégradation du pergélisol sous les remblais a entraîné de graves dommages structuraux à la route, entraînant une augmentation importante des coûts d'entretien et une réduction de la durée de vie des infrastructures. Pendant ce temps, l'advection de chaleur déclenchée par les écoulements d’eau souterrains peut altérer le bilan énergétique du remblai et du pergélisol sous-jacent et modifier le régime thermique des remblais routiers. Cependant, peu de recherches ont été effectuées pour comprendre la synergie entre les processus thermiques de surface et souterrains des remblais routiers des régions froides. L'objectif de cette recherche était de comprendre les interactions thermiques entre l'atmosphère, le remblai routier, les écoulements d’eau et le pergélisol dans le contexte du changement climatique. Cette base, de connaissances est nécessaire pour la conception technique, l'entretien des routes et l'évaluation de la vulnérabilité des infrastructures. Les travaux de recherche ont permis de développer de nouvelles méthodes d'analyse thermique pour caractériser et identifier le rôle de l'advection thermique sur le changement de température d'un remblai routier expérimental au Yukon (Canada) en termes d’intensité, de vitesse et de profondeur de l'impact thermique. Les résultats montrent que l'augmentation de la température due aux flux de chaleur advectifs déclenchés par l’écoulement d'eau peut être jusqu'à deux ordres de grandeur plus rapide qu'en raison du seul réchauffement atmosphérique. La recherche a ensuite présenté un bilan énergétique de surface pour quantifier la quantité d'énergie entrant dans le centre et la pente du remblai avec des épaisseurs et des propriétés de neige variables. Le tout a été appuyé par des observations géothermique de plusieurs années et une grande quantité de données météorologiques. Les résultats illustrent que le bilan énergétique de surface est principalement contrôlé par le rayonnement net et moins par le flux de chaleur sensible. Le flux de chaleur transmis à la pente du remblai diminue de façon exponentielle avec l'augmentation de l'épaisseur de la neige et diminue de façon linéaire avec l’installation du couvert de neige et la longueur de la période d’enneigement. De plus, un modèle de bilan énergétique de surface et un modèle cryohydrologique entièrement couplé ont été développés pour étudier l'impact thermique de l'advection de chaleur associée à l'écoulement de l'eau souterraine sur le dégel du pergélisol et le développement de taliks (c.-à-d. zone perpétuellement non gelée dans les zones de pergélisol). Le modèle couplé a réussi à reproduire la tendance à la hausse du plafond du pergélisol (erreur absolue moyenne <0,2 m) au cours de la période 1997-2018. Les résultats montrent que l'advection de chaleur a fourni une source d'énergie supplémentaire pour accélérer le dégel du pergélisol et a doublé le taux d’augmentation de l’épaisseur de la couche active 0,1 m·a-1 à 0,19 m·a-1, par rapport au scénario où aucun écoulement d'eau ne se produit. Le talik s'est initialement formé et développé en fonction du temps sous l’effet combiné des écoulement d’eau, de l'isolation de la neige, de la construction de la route et du réchauffement climatique. Le débit d'eau souterraine a relié des corps isolés de talik et a amené le remblai de la route dans un état thermique irréversible, en raison de la rétroaction de l'eau liquide (effet de chaleur latente) piégée dans le talik. Ces résultats montrent l'importance de l'advection de chaleur induite par l'écoulement d'eau sur le régime thermique de la sous-couche (c.-à-d. la couche de matériau de remblai) et du sous-sol (c.-à-d. le matériau natif sous un remblai) du remblai lorsque le remblai routier intercepte le drainage local. De plus, les résultats obtenus soulignent la nécessité de coupler les processus thermiques de surface et souterrains dans le but d'évaluer la stabilité thermique des routes subarctiques. / Transportation infrastructure is crucial to maintaining and expanding the social and economic activities in circumpolar regions. As the climate warms, degradation of the permafrost causes severe structural damages to the road embankment, leading to large increases in maintenance costs and reductions in its lifespan. Meanwhile, heat advection triggered by mobile water flow can alter energy balance of the embankment and underlying permafrost and modify the thermal regime of road embankments. However, little research has been done to understand the synergy between surface and subsurface thermal processes of cold region road embankments. The overall goal of this research was to elucidate thermal interactions between the atmosphere, the road embankment, mobile water flow, and permafrost within the context of climate change. This knowledge is needed for engineered design, road maintenance, and infrastructure vulnerability assessment. The research first used new thermal analysis to characterize and identify the role of heat advection on temperature change of an experimental road embankment, Yukon, Canada in terms of magnitude, rate and thermal impact depth. It shows that soil temperature increase due to advective heat fluxes triggered by mobile water flow can be up to two orders of magnitude faster than due to atmospheric warming only. The research then presented a novel surface energy balance to quantify the amount of ground heat flux entering the embankment center and slope with varying snow depth and properties, supported by multi-year thermal and meteorological observations. My results illustrate that the surface energy budget is mainly controlled by net radiation, and less by the sensible heat flux. The ground heat flux released at embankment slope exponentially decreased with the increase of snow depth, and was linearly reduced with earlier snow cover and longer snow-covered period. A fully integrated surface energy balance and cryohydrogeological model was implemented to investigate the thermal impact of heat advection associated with subsurface water flow on permafrost thaw and talik (i.e., perennially unfrozen zone in permafrost areas) development. The integrated model successfully reproduced the observed increasing trend of the active layer depth (mean absolute error < 0.2 m) over the 1997-2018 period. The results show that heat advection provided an additional energy source to expedite permafrost thaw, doubling the increasing rate of permafrost table depth from 0.1 m·a-1 to 0.19 m·a-1, compared with the scenario where no water flow occurs. Talik formation and development occurred over time under the combined effect of subsurface water flow, snow insulation, road construction and climate warming. Subsurface water flow connected isolated talik bodies and triggered an irreversible thermal state for the road embankment, due to a local feedback mechanism (latent heat effect) of trapped, unfrozen water in talik. These findings elucidate the importance of heat advection induced by mobile water flow on the thermal regime of embankment subbase (i.e., a layer of fill material) and subgrade (i.e., the native material under an embankment) when the road embankment intercepts the local drainage. Furthermore, the obtained results emphasize the need to couple surface and subsurface thermal processes to evaluate the thermal stability of sub-Arctic roads.

Page generated in 0.0869 seconds